mirror of https://github.com/home-assistant/core
317 lines
11 KiB
Python
317 lines
11 KiB
Python
"""Conversation support for Anthropic."""
|
|
|
|
from collections.abc import Callable
|
|
import json
|
|
from typing import Any, Literal, cast
|
|
|
|
import anthropic
|
|
from anthropic._types import NOT_GIVEN
|
|
from anthropic.types import (
|
|
Message,
|
|
MessageParam,
|
|
TextBlock,
|
|
TextBlockParam,
|
|
ToolParam,
|
|
ToolResultBlockParam,
|
|
ToolUseBlock,
|
|
ToolUseBlockParam,
|
|
)
|
|
import voluptuous as vol
|
|
from voluptuous_openapi import convert
|
|
|
|
from homeassistant.components import conversation
|
|
from homeassistant.components.conversation import trace
|
|
from homeassistant.config_entries import ConfigEntry
|
|
from homeassistant.const import CONF_LLM_HASS_API, MATCH_ALL
|
|
from homeassistant.core import HomeAssistant
|
|
from homeassistant.exceptions import HomeAssistantError, TemplateError
|
|
from homeassistant.helpers import device_registry as dr, intent, llm, template
|
|
from homeassistant.helpers.entity_platform import AddEntitiesCallback
|
|
from homeassistant.util import ulid
|
|
|
|
from . import AnthropicConfigEntry
|
|
from .const import (
|
|
CONF_CHAT_MODEL,
|
|
CONF_MAX_TOKENS,
|
|
CONF_PROMPT,
|
|
CONF_TEMPERATURE,
|
|
DOMAIN,
|
|
LOGGER,
|
|
RECOMMENDED_CHAT_MODEL,
|
|
RECOMMENDED_MAX_TOKENS,
|
|
RECOMMENDED_TEMPERATURE,
|
|
)
|
|
|
|
# Max number of back and forth with the LLM to generate a response
|
|
MAX_TOOL_ITERATIONS = 10
|
|
|
|
|
|
async def async_setup_entry(
|
|
hass: HomeAssistant,
|
|
config_entry: AnthropicConfigEntry,
|
|
async_add_entities: AddEntitiesCallback,
|
|
) -> None:
|
|
"""Set up conversation entities."""
|
|
agent = AnthropicConversationEntity(config_entry)
|
|
async_add_entities([agent])
|
|
|
|
|
|
def _format_tool(
|
|
tool: llm.Tool, custom_serializer: Callable[[Any], Any] | None
|
|
) -> ToolParam:
|
|
"""Format tool specification."""
|
|
return ToolParam(
|
|
name=tool.name,
|
|
description=tool.description or "",
|
|
input_schema=convert(tool.parameters, custom_serializer=custom_serializer),
|
|
)
|
|
|
|
|
|
def _message_convert(
|
|
message: Message,
|
|
) -> MessageParam:
|
|
"""Convert from class to TypedDict."""
|
|
param_content: list[TextBlockParam | ToolUseBlockParam] = []
|
|
|
|
for message_content in message.content:
|
|
if isinstance(message_content, TextBlock):
|
|
param_content.append(TextBlockParam(type="text", text=message_content.text))
|
|
elif isinstance(message_content, ToolUseBlock):
|
|
param_content.append(
|
|
ToolUseBlockParam(
|
|
type="tool_use",
|
|
id=message_content.id,
|
|
name=message_content.name,
|
|
input=message_content.input,
|
|
)
|
|
)
|
|
|
|
return MessageParam(role=message.role, content=param_content)
|
|
|
|
|
|
class AnthropicConversationEntity(
|
|
conversation.ConversationEntity, conversation.AbstractConversationAgent
|
|
):
|
|
"""Anthropic conversation agent."""
|
|
|
|
_attr_has_entity_name = True
|
|
_attr_name = None
|
|
|
|
def __init__(self, entry: AnthropicConfigEntry) -> None:
|
|
"""Initialize the agent."""
|
|
self.entry = entry
|
|
self.history: dict[str, list[MessageParam]] = {}
|
|
self._attr_unique_id = entry.entry_id
|
|
self._attr_device_info = dr.DeviceInfo(
|
|
identifiers={(DOMAIN, entry.entry_id)},
|
|
manufacturer="Anthropic",
|
|
model="Claude",
|
|
entry_type=dr.DeviceEntryType.SERVICE,
|
|
)
|
|
if self.entry.options.get(CONF_LLM_HASS_API):
|
|
self._attr_supported_features = (
|
|
conversation.ConversationEntityFeature.CONTROL
|
|
)
|
|
|
|
@property
|
|
def supported_languages(self) -> list[str] | Literal["*"]:
|
|
"""Return a list of supported languages."""
|
|
return MATCH_ALL
|
|
|
|
async def async_added_to_hass(self) -> None:
|
|
"""When entity is added to Home Assistant."""
|
|
await super().async_added_to_hass()
|
|
self.entry.async_on_unload(
|
|
self.entry.add_update_listener(self._async_entry_update_listener)
|
|
)
|
|
|
|
async def async_process(
|
|
self, user_input: conversation.ConversationInput
|
|
) -> conversation.ConversationResult:
|
|
"""Process a sentence."""
|
|
options = self.entry.options
|
|
intent_response = intent.IntentResponse(language=user_input.language)
|
|
llm_api: llm.APIInstance | None = None
|
|
tools: list[ToolParam] | None = None
|
|
user_name: str | None = None
|
|
llm_context = llm.LLMContext(
|
|
platform=DOMAIN,
|
|
context=user_input.context,
|
|
user_prompt=user_input.text,
|
|
language=user_input.language,
|
|
assistant=conversation.DOMAIN,
|
|
device_id=user_input.device_id,
|
|
)
|
|
|
|
if options.get(CONF_LLM_HASS_API):
|
|
try:
|
|
llm_api = await llm.async_get_api(
|
|
self.hass,
|
|
options[CONF_LLM_HASS_API],
|
|
llm_context,
|
|
)
|
|
except HomeAssistantError as err:
|
|
LOGGER.error("Error getting LLM API: %s", err)
|
|
intent_response.async_set_error(
|
|
intent.IntentResponseErrorCode.UNKNOWN,
|
|
f"Error preparing LLM API: {err}",
|
|
)
|
|
return conversation.ConversationResult(
|
|
response=intent_response, conversation_id=user_input.conversation_id
|
|
)
|
|
tools = [
|
|
_format_tool(tool, llm_api.custom_serializer) for tool in llm_api.tools
|
|
]
|
|
|
|
if user_input.conversation_id is None:
|
|
conversation_id = ulid.ulid_now()
|
|
messages = []
|
|
|
|
elif user_input.conversation_id in self.history:
|
|
conversation_id = user_input.conversation_id
|
|
messages = self.history[conversation_id]
|
|
|
|
else:
|
|
# Conversation IDs are ULIDs. We generate a new one if not provided.
|
|
# If an old OLID is passed in, we will generate a new one to indicate
|
|
# a new conversation was started. If the user picks their own, they
|
|
# want to track a conversation and we respect it.
|
|
try:
|
|
ulid.ulid_to_bytes(user_input.conversation_id)
|
|
conversation_id = ulid.ulid_now()
|
|
except ValueError:
|
|
conversation_id = user_input.conversation_id
|
|
|
|
messages = []
|
|
|
|
if (
|
|
user_input.context
|
|
and user_input.context.user_id
|
|
and (
|
|
user := await self.hass.auth.async_get_user(user_input.context.user_id)
|
|
)
|
|
):
|
|
user_name = user.name
|
|
|
|
try:
|
|
prompt_parts = [
|
|
template.Template(
|
|
llm.BASE_PROMPT
|
|
+ options.get(CONF_PROMPT, llm.DEFAULT_INSTRUCTIONS_PROMPT),
|
|
self.hass,
|
|
).async_render(
|
|
{
|
|
"ha_name": self.hass.config.location_name,
|
|
"user_name": user_name,
|
|
"llm_context": llm_context,
|
|
},
|
|
parse_result=False,
|
|
)
|
|
]
|
|
|
|
except TemplateError as err:
|
|
LOGGER.error("Error rendering prompt: %s", err)
|
|
intent_response.async_set_error(
|
|
intent.IntentResponseErrorCode.UNKNOWN,
|
|
f"Sorry, I had a problem with my template: {err}",
|
|
)
|
|
return conversation.ConversationResult(
|
|
response=intent_response, conversation_id=conversation_id
|
|
)
|
|
|
|
if llm_api:
|
|
prompt_parts.append(llm_api.api_prompt)
|
|
|
|
prompt = "\n".join(prompt_parts)
|
|
|
|
# Create a copy of the variable because we attach it to the trace
|
|
messages = [*messages, MessageParam(role="user", content=user_input.text)]
|
|
|
|
LOGGER.debug("Prompt: %s", messages)
|
|
LOGGER.debug("Tools: %s", tools)
|
|
trace.async_conversation_trace_append(
|
|
trace.ConversationTraceEventType.AGENT_DETAIL,
|
|
{"system": prompt, "messages": messages},
|
|
)
|
|
|
|
client = self.entry.runtime_data
|
|
|
|
# To prevent infinite loops, we limit the number of iterations
|
|
for _iteration in range(MAX_TOOL_ITERATIONS):
|
|
try:
|
|
response = await client.messages.create(
|
|
model=options.get(CONF_CHAT_MODEL, RECOMMENDED_CHAT_MODEL),
|
|
messages=messages,
|
|
tools=tools or NOT_GIVEN,
|
|
max_tokens=options.get(CONF_MAX_TOKENS, RECOMMENDED_MAX_TOKENS),
|
|
system=prompt,
|
|
temperature=options.get(CONF_TEMPERATURE, RECOMMENDED_TEMPERATURE),
|
|
)
|
|
except anthropic.AnthropicError as err:
|
|
intent_response.async_set_error(
|
|
intent.IntentResponseErrorCode.UNKNOWN,
|
|
f"Sorry, I had a problem talking to Anthropic: {err}",
|
|
)
|
|
return conversation.ConversationResult(
|
|
response=intent_response, conversation_id=conversation_id
|
|
)
|
|
|
|
LOGGER.debug("Response %s", response)
|
|
|
|
messages.append(_message_convert(response))
|
|
|
|
if response.stop_reason != "tool_use" or not llm_api:
|
|
break
|
|
|
|
tool_results: list[ToolResultBlockParam] = []
|
|
for tool_call in response.content:
|
|
if isinstance(tool_call, TextBlock):
|
|
LOGGER.info(tool_call.text)
|
|
|
|
if not isinstance(tool_call, ToolUseBlock):
|
|
continue
|
|
|
|
tool_input = llm.ToolInput(
|
|
tool_name=tool_call.name,
|
|
tool_args=cast(dict[str, Any], tool_call.input),
|
|
)
|
|
LOGGER.debug(
|
|
"Tool call: %s(%s)", tool_input.tool_name, tool_input.tool_args
|
|
)
|
|
|
|
try:
|
|
tool_response = await llm_api.async_call_tool(tool_input)
|
|
except (HomeAssistantError, vol.Invalid) as e:
|
|
tool_response = {"error": type(e).__name__}
|
|
if str(e):
|
|
tool_response["error_text"] = str(e)
|
|
|
|
LOGGER.debug("Tool response: %s", tool_response)
|
|
tool_results.append(
|
|
ToolResultBlockParam(
|
|
type="tool_result",
|
|
tool_use_id=tool_call.id,
|
|
content=json.dumps(tool_response),
|
|
)
|
|
)
|
|
|
|
messages.append(MessageParam(role="user", content=tool_results))
|
|
|
|
self.history[conversation_id] = messages
|
|
|
|
for content in response.content:
|
|
if isinstance(content, TextBlock):
|
|
intent_response.async_set_speech(content.text)
|
|
break
|
|
|
|
return conversation.ConversationResult(
|
|
response=intent_response, conversation_id=conversation_id
|
|
)
|
|
|
|
async def _async_entry_update_listener(
|
|
self, hass: HomeAssistant, entry: ConfigEntry
|
|
) -> None:
|
|
"""Handle options update."""
|
|
# Reload as we update device info + entity name + supported features
|
|
await hass.config_entries.async_reload(entry.entry_id)
|