mirror of https://github.com/home-assistant/core
281 lines
9.3 KiB
Python
281 lines
9.3 KiB
Python
"""A sensor that monitors trends in other components."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from collections import deque
|
|
from collections.abc import Mapping
|
|
import logging
|
|
import math
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.binary_sensor import (
|
|
DEVICE_CLASSES_SCHEMA,
|
|
ENTITY_ID_FORMAT,
|
|
PLATFORM_SCHEMA as BINARY_SENSOR_PLATFORM_SCHEMA,
|
|
BinarySensorDeviceClass,
|
|
BinarySensorEntity,
|
|
)
|
|
from homeassistant.config_entries import ConfigEntry
|
|
from homeassistant.const import (
|
|
ATTR_ENTITY_ID,
|
|
ATTR_FRIENDLY_NAME,
|
|
CONF_ATTRIBUTE,
|
|
CONF_DEVICE_CLASS,
|
|
CONF_ENTITY_ID,
|
|
CONF_FRIENDLY_NAME,
|
|
CONF_SENSORS,
|
|
STATE_ON,
|
|
STATE_UNAVAILABLE,
|
|
STATE_UNKNOWN,
|
|
)
|
|
from homeassistant.core import Event, EventStateChangedData, HomeAssistant, callback
|
|
from homeassistant.helpers import device_registry as dr
|
|
import homeassistant.helpers.config_validation as cv
|
|
from homeassistant.helpers.device import async_device_info_to_link_from_entity
|
|
from homeassistant.helpers.entity import generate_entity_id
|
|
from homeassistant.helpers.entity_platform import AddEntitiesCallback
|
|
from homeassistant.helpers.event import async_track_state_change_event
|
|
from homeassistant.helpers.reload import async_setup_reload_service
|
|
from homeassistant.helpers.restore_state import RestoreEntity
|
|
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType
|
|
from homeassistant.util.dt import utcnow
|
|
|
|
from . import PLATFORMS
|
|
from .const import (
|
|
ATTR_GRADIENT,
|
|
ATTR_INVERT,
|
|
ATTR_MIN_GRADIENT,
|
|
ATTR_SAMPLE_COUNT,
|
|
ATTR_SAMPLE_DURATION,
|
|
CONF_INVERT,
|
|
CONF_MAX_SAMPLES,
|
|
CONF_MIN_GRADIENT,
|
|
CONF_MIN_SAMPLES,
|
|
CONF_SAMPLE_DURATION,
|
|
DEFAULT_MAX_SAMPLES,
|
|
DEFAULT_MIN_GRADIENT,
|
|
DEFAULT_MIN_SAMPLES,
|
|
DEFAULT_SAMPLE_DURATION,
|
|
DOMAIN,
|
|
)
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
|
|
def _validate_min_max(data: dict[str, Any]) -> dict[str, Any]:
|
|
if (
|
|
CONF_MIN_SAMPLES in data
|
|
and CONF_MAX_SAMPLES in data
|
|
and data[CONF_MAX_SAMPLES] < data[CONF_MIN_SAMPLES]
|
|
):
|
|
raise vol.Invalid("min_samples must be smaller than or equal to max_samples")
|
|
return data
|
|
|
|
|
|
SENSOR_SCHEMA = vol.All(
|
|
vol.Schema(
|
|
{
|
|
vol.Required(CONF_ENTITY_ID): cv.entity_id,
|
|
vol.Optional(CONF_ATTRIBUTE): cv.string,
|
|
vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA,
|
|
vol.Optional(CONF_FRIENDLY_NAME): cv.string,
|
|
vol.Optional(CONF_INVERT, default=False): cv.boolean,
|
|
vol.Optional(CONF_MAX_SAMPLES, default=2): cv.positive_int,
|
|
vol.Optional(CONF_MIN_GRADIENT, default=0.0): vol.Coerce(float),
|
|
vol.Optional(CONF_SAMPLE_DURATION, default=0): cv.positive_int,
|
|
vol.Optional(CONF_MIN_SAMPLES, default=2): cv.positive_int,
|
|
}
|
|
),
|
|
_validate_min_max,
|
|
)
|
|
|
|
PLATFORM_SCHEMA = BINARY_SENSOR_PLATFORM_SCHEMA.extend(
|
|
{vol.Required(CONF_SENSORS): cv.schema_with_slug_keys(SENSOR_SCHEMA)}
|
|
)
|
|
|
|
|
|
async def async_setup_platform(
|
|
hass: HomeAssistant,
|
|
config: ConfigType,
|
|
async_add_entities: AddEntitiesCallback,
|
|
discovery_info: DiscoveryInfoType | None = None,
|
|
) -> None:
|
|
"""Set up the trend sensors."""
|
|
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
|
|
|
|
entities = []
|
|
for sensor_name, sensor_config in config[CONF_SENSORS].items():
|
|
entities.append(
|
|
SensorTrend(
|
|
name=sensor_config.get(CONF_FRIENDLY_NAME, sensor_name),
|
|
entity_id=sensor_config[CONF_ENTITY_ID],
|
|
attribute=sensor_config.get(CONF_ATTRIBUTE),
|
|
invert=sensor_config[CONF_INVERT],
|
|
sample_duration=sensor_config[CONF_SAMPLE_DURATION],
|
|
min_gradient=sensor_config[CONF_MIN_GRADIENT],
|
|
min_samples=sensor_config[CONF_MIN_SAMPLES],
|
|
max_samples=sensor_config[CONF_MAX_SAMPLES],
|
|
device_class=sensor_config.get(CONF_DEVICE_CLASS),
|
|
sensor_entity_id=generate_entity_id(
|
|
ENTITY_ID_FORMAT, sensor_name, hass=hass
|
|
),
|
|
)
|
|
)
|
|
|
|
async_add_entities(entities)
|
|
|
|
|
|
async def async_setup_entry(
|
|
hass: HomeAssistant,
|
|
entry: ConfigEntry,
|
|
async_add_entities: AddEntitiesCallback,
|
|
) -> None:
|
|
"""Set up trend sensor from config entry."""
|
|
|
|
device_info = async_device_info_to_link_from_entity(
|
|
hass,
|
|
entry.options[CONF_ENTITY_ID],
|
|
)
|
|
|
|
async_add_entities(
|
|
[
|
|
SensorTrend(
|
|
name=entry.title,
|
|
entity_id=entry.options[CONF_ENTITY_ID],
|
|
attribute=entry.options.get(CONF_ATTRIBUTE),
|
|
invert=entry.options[CONF_INVERT],
|
|
sample_duration=entry.options.get(
|
|
CONF_SAMPLE_DURATION, DEFAULT_SAMPLE_DURATION
|
|
),
|
|
min_gradient=entry.options.get(CONF_MIN_GRADIENT, DEFAULT_MIN_GRADIENT),
|
|
min_samples=entry.options.get(CONF_MIN_SAMPLES, DEFAULT_MIN_SAMPLES),
|
|
max_samples=entry.options.get(CONF_MAX_SAMPLES, DEFAULT_MAX_SAMPLES),
|
|
unique_id=entry.entry_id,
|
|
device_info=device_info,
|
|
)
|
|
]
|
|
)
|
|
|
|
|
|
class SensorTrend(BinarySensorEntity, RestoreEntity):
|
|
"""Representation of a trend Sensor."""
|
|
|
|
_attr_should_poll = False
|
|
_gradient = 0.0
|
|
_state: bool | None = None
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
entity_id: str,
|
|
attribute: str | None,
|
|
invert: bool,
|
|
sample_duration: int,
|
|
min_gradient: float,
|
|
min_samples: int,
|
|
max_samples: int,
|
|
unique_id: str | None = None,
|
|
device_class: BinarySensorDeviceClass | None = None,
|
|
sensor_entity_id: str | None = None,
|
|
device_info: dr.DeviceInfo | None = None,
|
|
) -> None:
|
|
"""Initialize the sensor."""
|
|
self._entity_id = entity_id
|
|
self._attribute = attribute
|
|
self._invert = invert
|
|
self._sample_duration = sample_duration
|
|
self._min_gradient = min_gradient
|
|
self._min_samples = min_samples
|
|
self.samples: deque = deque(maxlen=int(max_samples))
|
|
|
|
self._attr_name = name
|
|
self._attr_device_class = device_class
|
|
self._attr_unique_id = unique_id
|
|
self._attr_device_info = device_info
|
|
|
|
if sensor_entity_id:
|
|
self.entity_id = sensor_entity_id
|
|
|
|
@property
|
|
def extra_state_attributes(self) -> Mapping[str, Any]:
|
|
"""Return the state attributes of the sensor."""
|
|
return {
|
|
ATTR_ENTITY_ID: self._entity_id,
|
|
ATTR_FRIENDLY_NAME: self._attr_name,
|
|
ATTR_GRADIENT: self._gradient,
|
|
ATTR_INVERT: self._invert,
|
|
ATTR_MIN_GRADIENT: self._min_gradient,
|
|
ATTR_SAMPLE_COUNT: len(self.samples),
|
|
ATTR_SAMPLE_DURATION: self._sample_duration,
|
|
}
|
|
|
|
async def async_added_to_hass(self) -> None:
|
|
"""Complete device setup after being added to hass."""
|
|
|
|
@callback
|
|
def trend_sensor_state_listener(
|
|
event: Event[EventStateChangedData],
|
|
) -> None:
|
|
"""Handle state changes on the observed device."""
|
|
if (new_state := event.data["new_state"]) is None:
|
|
return
|
|
try:
|
|
if self._attribute:
|
|
state = new_state.attributes.get(self._attribute)
|
|
else:
|
|
state = new_state.state
|
|
if state not in (STATE_UNKNOWN, STATE_UNAVAILABLE):
|
|
sample = (new_state.last_updated.timestamp(), float(state)) # type: ignore[arg-type]
|
|
self.samples.append(sample)
|
|
self.async_schedule_update_ha_state(True)
|
|
except (ValueError, TypeError) as ex:
|
|
_LOGGER.error(ex)
|
|
|
|
self.async_on_remove(
|
|
async_track_state_change_event(
|
|
self.hass, [self._entity_id], trend_sensor_state_listener
|
|
)
|
|
)
|
|
|
|
if not (state := await self.async_get_last_state()):
|
|
return
|
|
if state.state in {STATE_UNKNOWN, STATE_UNAVAILABLE}:
|
|
return
|
|
self._attr_is_on = state.state == STATE_ON
|
|
|
|
async def async_update(self) -> None:
|
|
"""Get the latest data and update the states."""
|
|
# Remove outdated samples
|
|
if self._sample_duration > 0:
|
|
cutoff = utcnow().timestamp() - self._sample_duration
|
|
while self.samples and self.samples[0][0] < cutoff:
|
|
self.samples.popleft()
|
|
|
|
if len(self.samples) < self._min_samples:
|
|
return
|
|
|
|
# Calculate gradient of linear trend
|
|
await self.hass.async_add_executor_job(self._calculate_gradient)
|
|
|
|
# Update state
|
|
self._attr_is_on = (
|
|
abs(self._gradient) > abs(self._min_gradient)
|
|
and math.copysign(self._gradient, self._min_gradient) == self._gradient
|
|
)
|
|
|
|
if self._invert:
|
|
self._attr_is_on = not self._attr_is_on
|
|
|
|
def _calculate_gradient(self) -> None:
|
|
"""Compute the linear trend gradient of the current samples.
|
|
|
|
This need run inside executor.
|
|
"""
|
|
timestamps = np.array([t for t, _ in self.samples])
|
|
values = np.array([s for _, s in self.samples])
|
|
coeffs = np.polyfit(timestamps, values, 1)
|
|
self._gradient = coeffs[0]
|