bitcoin/src/crypto/chacha20.cpp

373 lines
10 KiB
C++

// Copyright (c) 2017-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Based on the public domain implementation 'merged' by D. J. Bernstein
// See https://cr.yp.to/chacha.html.
#include <crypto/common.h>
#include <crypto/chacha20.h>
#include <support/cleanse.h>
#include <span.h>
#include <algorithm>
#include <bit>
#include <string.h>
#define QUARTERROUND(a,b,c,d) \
a += b; d = std::rotl(d ^ a, 16); \
c += d; b = std::rotl(b ^ c, 12); \
a += b; d = std::rotl(d ^ a, 8); \
c += d; b = std::rotl(b ^ c, 7);
#define REPEAT10(a) do { {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; } while(0)
void ChaCha20Aligned::SetKey(Span<const std::byte> key) noexcept
{
assert(key.size() == KEYLEN);
input[0] = ReadLE32(UCharCast(key.data() + 0));
input[1] = ReadLE32(UCharCast(key.data() + 4));
input[2] = ReadLE32(UCharCast(key.data() + 8));
input[3] = ReadLE32(UCharCast(key.data() + 12));
input[4] = ReadLE32(UCharCast(key.data() + 16));
input[5] = ReadLE32(UCharCast(key.data() + 20));
input[6] = ReadLE32(UCharCast(key.data() + 24));
input[7] = ReadLE32(UCharCast(key.data() + 28));
input[8] = 0;
input[9] = 0;
input[10] = 0;
input[11] = 0;
}
ChaCha20Aligned::~ChaCha20Aligned()
{
memory_cleanse(input, sizeof(input));
}
ChaCha20Aligned::ChaCha20Aligned(Span<const std::byte> key) noexcept
{
SetKey(key);
}
void ChaCha20Aligned::Seek(Nonce96 nonce, uint32_t block_counter) noexcept
{
input[8] = block_counter;
input[9] = nonce.first;
input[10] = nonce.second;
input[11] = nonce.second >> 32;
}
inline void ChaCha20Aligned::Keystream(Span<std::byte> output) noexcept
{
unsigned char* c = UCharCast(output.data());
size_t blocks = output.size() / BLOCKLEN;
assert(blocks * BLOCKLEN == output.size());
uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
uint32_t j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
if (!blocks) return;
j4 = input[0];
j5 = input[1];
j6 = input[2];
j7 = input[3];
j8 = input[4];
j9 = input[5];
j10 = input[6];
j11 = input[7];
j12 = input[8];
j13 = input[9];
j14 = input[10];
j15 = input[11];
for (;;) {
x0 = 0x61707865;
x1 = 0x3320646e;
x2 = 0x79622d32;
x3 = 0x6b206574;
x4 = j4;
x5 = j5;
x6 = j6;
x7 = j7;
x8 = j8;
x9 = j9;
x10 = j10;
x11 = j11;
x12 = j12;
x13 = j13;
x14 = j14;
x15 = j15;
// The 20 inner ChaCha20 rounds are unrolled here for performance.
REPEAT10(
QUARTERROUND( x0, x4, x8,x12);
QUARTERROUND( x1, x5, x9,x13);
QUARTERROUND( x2, x6,x10,x14);
QUARTERROUND( x3, x7,x11,x15);
QUARTERROUND( x0, x5,x10,x15);
QUARTERROUND( x1, x6,x11,x12);
QUARTERROUND( x2, x7, x8,x13);
QUARTERROUND( x3, x4, x9,x14);
);
x0 += 0x61707865;
x1 += 0x3320646e;
x2 += 0x79622d32;
x3 += 0x6b206574;
x4 += j4;
x5 += j5;
x6 += j6;
x7 += j7;
x8 += j8;
x9 += j9;
x10 += j10;
x11 += j11;
x12 += j12;
x13 += j13;
x14 += j14;
x15 += j15;
++j12;
if (!j12) ++j13;
WriteLE32(c + 0, x0);
WriteLE32(c + 4, x1);
WriteLE32(c + 8, x2);
WriteLE32(c + 12, x3);
WriteLE32(c + 16, x4);
WriteLE32(c + 20, x5);
WriteLE32(c + 24, x6);
WriteLE32(c + 28, x7);
WriteLE32(c + 32, x8);
WriteLE32(c + 36, x9);
WriteLE32(c + 40, x10);
WriteLE32(c + 44, x11);
WriteLE32(c + 48, x12);
WriteLE32(c + 52, x13);
WriteLE32(c + 56, x14);
WriteLE32(c + 60, x15);
if (blocks == 1) {
input[8] = j12;
input[9] = j13;
return;
}
blocks -= 1;
c += BLOCKLEN;
}
}
inline void ChaCha20Aligned::Crypt(Span<const std::byte> in_bytes, Span<std::byte> out_bytes) noexcept
{
assert(in_bytes.size() == out_bytes.size());
const unsigned char* m = UCharCast(in_bytes.data());
unsigned char* c = UCharCast(out_bytes.data());
size_t blocks = out_bytes.size() / BLOCKLEN;
assert(blocks * BLOCKLEN == out_bytes.size());
uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
uint32_t j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
if (!blocks) return;
j4 = input[0];
j5 = input[1];
j6 = input[2];
j7 = input[3];
j8 = input[4];
j9 = input[5];
j10 = input[6];
j11 = input[7];
j12 = input[8];
j13 = input[9];
j14 = input[10];
j15 = input[11];
for (;;) {
x0 = 0x61707865;
x1 = 0x3320646e;
x2 = 0x79622d32;
x3 = 0x6b206574;
x4 = j4;
x5 = j5;
x6 = j6;
x7 = j7;
x8 = j8;
x9 = j9;
x10 = j10;
x11 = j11;
x12 = j12;
x13 = j13;
x14 = j14;
x15 = j15;
// The 20 inner ChaCha20 rounds are unrolled here for performance.
REPEAT10(
QUARTERROUND( x0, x4, x8,x12);
QUARTERROUND( x1, x5, x9,x13);
QUARTERROUND( x2, x6,x10,x14);
QUARTERROUND( x3, x7,x11,x15);
QUARTERROUND( x0, x5,x10,x15);
QUARTERROUND( x1, x6,x11,x12);
QUARTERROUND( x2, x7, x8,x13);
QUARTERROUND( x3, x4, x9,x14);
);
x0 += 0x61707865;
x1 += 0x3320646e;
x2 += 0x79622d32;
x3 += 0x6b206574;
x4 += j4;
x5 += j5;
x6 += j6;
x7 += j7;
x8 += j8;
x9 += j9;
x10 += j10;
x11 += j11;
x12 += j12;
x13 += j13;
x14 += j14;
x15 += j15;
x0 ^= ReadLE32(m + 0);
x1 ^= ReadLE32(m + 4);
x2 ^= ReadLE32(m + 8);
x3 ^= ReadLE32(m + 12);
x4 ^= ReadLE32(m + 16);
x5 ^= ReadLE32(m + 20);
x6 ^= ReadLE32(m + 24);
x7 ^= ReadLE32(m + 28);
x8 ^= ReadLE32(m + 32);
x9 ^= ReadLE32(m + 36);
x10 ^= ReadLE32(m + 40);
x11 ^= ReadLE32(m + 44);
x12 ^= ReadLE32(m + 48);
x13 ^= ReadLE32(m + 52);
x14 ^= ReadLE32(m + 56);
x15 ^= ReadLE32(m + 60);
++j12;
if (!j12) ++j13;
WriteLE32(c + 0, x0);
WriteLE32(c + 4, x1);
WriteLE32(c + 8, x2);
WriteLE32(c + 12, x3);
WriteLE32(c + 16, x4);
WriteLE32(c + 20, x5);
WriteLE32(c + 24, x6);
WriteLE32(c + 28, x7);
WriteLE32(c + 32, x8);
WriteLE32(c + 36, x9);
WriteLE32(c + 40, x10);
WriteLE32(c + 44, x11);
WriteLE32(c + 48, x12);
WriteLE32(c + 52, x13);
WriteLE32(c + 56, x14);
WriteLE32(c + 60, x15);
if (blocks == 1) {
input[8] = j12;
input[9] = j13;
return;
}
blocks -= 1;
c += BLOCKLEN;
m += BLOCKLEN;
}
}
void ChaCha20::Keystream(Span<std::byte> out) noexcept
{
if (out.empty()) return;
if (m_bufleft) {
unsigned reuse = std::min<size_t>(m_bufleft, out.size());
std::copy(m_buffer.end() - m_bufleft, m_buffer.end() - m_bufleft + reuse, out.begin());
m_bufleft -= reuse;
out = out.subspan(reuse);
}
if (out.size() >= m_aligned.BLOCKLEN) {
size_t blocks = out.size() / m_aligned.BLOCKLEN;
m_aligned.Keystream(out.first(blocks * m_aligned.BLOCKLEN));
out = out.subspan(blocks * m_aligned.BLOCKLEN);
}
if (!out.empty()) {
m_aligned.Keystream(m_buffer);
std::copy(m_buffer.begin(), m_buffer.begin() + out.size(), out.begin());
m_bufleft = m_aligned.BLOCKLEN - out.size();
}
}
void ChaCha20::Crypt(Span<const std::byte> input, Span<std::byte> output) noexcept
{
assert(input.size() == output.size());
if (!input.size()) return;
if (m_bufleft) {
unsigned reuse = std::min<size_t>(m_bufleft, input.size());
for (unsigned i = 0; i < reuse; i++) {
output[i] = input[i] ^ m_buffer[m_aligned.BLOCKLEN - m_bufleft + i];
}
m_bufleft -= reuse;
output = output.subspan(reuse);
input = input.subspan(reuse);
}
if (input.size() >= m_aligned.BLOCKLEN) {
size_t blocks = input.size() / m_aligned.BLOCKLEN;
m_aligned.Crypt(input.first(blocks * m_aligned.BLOCKLEN), output.first(blocks * m_aligned.BLOCKLEN));
output = output.subspan(blocks * m_aligned.BLOCKLEN);
input = input.subspan(blocks * m_aligned.BLOCKLEN);
}
if (!input.empty()) {
m_aligned.Keystream(m_buffer);
for (unsigned i = 0; i < input.size(); i++) {
output[i] = input[i] ^ m_buffer[i];
}
m_bufleft = m_aligned.BLOCKLEN - input.size();
}
}
ChaCha20::~ChaCha20()
{
memory_cleanse(m_buffer.data(), m_buffer.size());
}
void ChaCha20::SetKey(Span<const std::byte> key) noexcept
{
m_aligned.SetKey(key);
m_bufleft = 0;
memory_cleanse(m_buffer.data(), m_buffer.size());
}
FSChaCha20::FSChaCha20(Span<const std::byte> key, uint32_t rekey_interval) noexcept :
m_chacha20(key), m_rekey_interval(rekey_interval)
{
assert(key.size() == KEYLEN);
}
void FSChaCha20::Crypt(Span<const std::byte> input, Span<std::byte> output) noexcept
{
assert(input.size() == output.size());
// Invoke internal stream cipher for actual encryption/decryption.
m_chacha20.Crypt(input, output);
// Rekey after m_rekey_interval encryptions/decryptions.
if (++m_chunk_counter == m_rekey_interval) {
// Get new key from the stream cipher.
std::byte new_key[KEYLEN];
m_chacha20.Keystream(new_key);
// Update its key.
m_chacha20.SetKey(new_key);
// Wipe the key (a copy remains inside m_chacha20, where it'll be wiped on the next rekey
// or on destruction).
memory_cleanse(new_key, sizeof(new_key));
// Set the nonce for the new section of output.
m_chacha20.Seek({0, ++m_rekey_counter}, 0);
// Reset the chunk counter.
m_chunk_counter = 0;
}
}