bitcoin/src/util/sock.h

288 lines
11 KiB
C++

// Copyright (c) 2020-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UTIL_SOCK_H
#define BITCOIN_UTIL_SOCK_H
#include <compat/compat.h>
#include <util/threadinterrupt.h>
#include <util/time.h>
#include <chrono>
#include <memory>
#include <string>
#include <unordered_map>
/**
* Maximum time to wait for I/O readiness.
* It will take up until this time to break off in case of an interruption.
*/
static constexpr auto MAX_WAIT_FOR_IO = 1s;
/**
* RAII helper class that manages a socket and closes it automatically when it goes out of scope.
*/
class Sock
{
public:
Sock() = delete;
/**
* Take ownership of an existent socket.
*/
explicit Sock(SOCKET s);
/**
* Copy constructor, disabled because closing the same socket twice is undesirable.
*/
Sock(const Sock&) = delete;
/**
* Move constructor, grab the socket from another object and close ours (if set).
*/
Sock(Sock&& other);
/**
* Destructor, close the socket or do nothing if empty.
*/
virtual ~Sock();
/**
* Copy assignment operator, disabled because closing the same socket twice is undesirable.
*/
Sock& operator=(const Sock&) = delete;
/**
* Move assignment operator, grab the socket from another object and close ours (if set).
*/
virtual Sock& operator=(Sock&& other);
/**
* send(2) wrapper. Equivalent to `send(m_socket, data, len, flags);`. Code that uses this
* wrapper can be unit tested if this method is overridden by a mock Sock implementation.
*/
[[nodiscard]] virtual ssize_t Send(const void* data, size_t len, int flags) const;
/**
* recv(2) wrapper. Equivalent to `recv(m_socket, buf, len, flags);`. Code that uses this
* wrapper can be unit tested if this method is overridden by a mock Sock implementation.
*/
[[nodiscard]] virtual ssize_t Recv(void* buf, size_t len, int flags) const;
/**
* connect(2) wrapper. Equivalent to `connect(m_socket, addr, addrlen)`. Code that uses this
* wrapper can be unit tested if this method is overridden by a mock Sock implementation.
*/
[[nodiscard]] virtual int Connect(const sockaddr* addr, socklen_t addr_len) const;
/**
* bind(2) wrapper. Equivalent to `bind(m_socket, addr, addr_len)`. Code that uses this
* wrapper can be unit tested if this method is overridden by a mock Sock implementation.
*/
[[nodiscard]] virtual int Bind(const sockaddr* addr, socklen_t addr_len) const;
/**
* listen(2) wrapper. Equivalent to `listen(m_socket, backlog)`. Code that uses this
* wrapper can be unit tested if this method is overridden by a mock Sock implementation.
*/
[[nodiscard]] virtual int Listen(int backlog) const;
/**
* accept(2) wrapper. Equivalent to `std::make_unique<Sock>(accept(m_socket, addr, addr_len))`.
* Code that uses this wrapper can be unit tested if this method is overridden by a mock Sock
* implementation.
* The returned unique_ptr is empty if `accept()` failed in which case errno will be set.
*/
[[nodiscard]] virtual std::unique_ptr<Sock> Accept(sockaddr* addr, socklen_t* addr_len) const;
/**
* getsockopt(2) wrapper. Equivalent to
* `getsockopt(m_socket, level, opt_name, opt_val, opt_len)`. Code that uses this
* wrapper can be unit tested if this method is overridden by a mock Sock implementation.
*/
[[nodiscard]] virtual int GetSockOpt(int level,
int opt_name,
void* opt_val,
socklen_t* opt_len) const;
/**
* setsockopt(2) wrapper. Equivalent to
* `setsockopt(m_socket, level, opt_name, opt_val, opt_len)`. Code that uses this
* wrapper can be unit tested if this method is overridden by a mock Sock implementation.
*/
[[nodiscard]] virtual int SetSockOpt(int level,
int opt_name,
const void* opt_val,
socklen_t opt_len) const;
/**
* getsockname(2) wrapper. Equivalent to
* `getsockname(m_socket, name, name_len)`. Code that uses this
* wrapper can be unit tested if this method is overridden by a mock Sock implementation.
*/
[[nodiscard]] virtual int GetSockName(sockaddr* name, socklen_t* name_len) const;
/**
* Set the non-blocking option on the socket.
* @return true if set successfully
*/
[[nodiscard]] virtual bool SetNonBlocking() const;
/**
* Check if the underlying socket can be used for `select(2)` (or the `Wait()` method).
* @return true if selectable
*/
[[nodiscard]] virtual bool IsSelectable() const;
using Event = uint8_t;
/**
* If passed to `Wait()`, then it will wait for readiness to read from the socket.
*/
static constexpr Event RECV = 0b001;
/**
* If passed to `Wait()`, then it will wait for readiness to send to the socket.
*/
static constexpr Event SEND = 0b010;
/**
* Ignored if passed to `Wait()`, but could be set in the occurred events if an
* exceptional condition has occurred on the socket or if it has been disconnected.
*/
static constexpr Event ERR = 0b100;
/**
* Wait for readiness for input (recv) or output (send).
* @param[in] timeout Wait this much for at least one of the requested events to occur.
* @param[in] requested Wait for those events, bitwise-or of `RECV` and `SEND`.
* @param[out] occurred If not nullptr and the function returns `true`, then this
* indicates which of the requested events occurred (`ERR` will be added, even if
* not requested, if an exceptional event occurs on the socket).
* A timeout is indicated by return value of `true` and `occurred` being set to 0.
* @return true on success (or timeout, if `occurred` of 0 is returned), false otherwise
*/
[[nodiscard]] virtual bool Wait(std::chrono::milliseconds timeout,
Event requested,
Event* occurred = nullptr) const;
/**
* Auxiliary requested/occurred events to wait for in `WaitMany()`.
*/
struct Events {
explicit Events(Event req) : requested{req} {}
Event requested;
Event occurred{0};
};
struct HashSharedPtrSock {
size_t operator()(const std::shared_ptr<const Sock>& s) const
{
return s ? s->m_socket : std::numeric_limits<SOCKET>::max();
}
};
struct EqualSharedPtrSock {
bool operator()(const std::shared_ptr<const Sock>& lhs,
const std::shared_ptr<const Sock>& rhs) const
{
if (lhs && rhs) {
return lhs->m_socket == rhs->m_socket;
}
if (!lhs && !rhs) {
return true;
}
return false;
}
};
/**
* On which socket to wait for what events in `WaitMany()`.
* The `shared_ptr` is copied into the map to ensure that the `Sock` object
* is not destroyed (its destructor would close the underlying socket).
* If this happens shortly before or after we call `poll(2)` and a new
* socket gets created under the same file descriptor number then the report
* from `WaitMany()` will be bogus.
*/
using EventsPerSock = std::unordered_map<std::shared_ptr<const Sock>, Events, HashSharedPtrSock, EqualSharedPtrSock>;
/**
* Same as `Wait()`, but wait on many sockets within the same timeout.
* @param[in] timeout Wait this long for at least one of the requested events to occur.
* @param[in,out] events_per_sock Wait for the requested events on these sockets and set
* `occurred` for the events that actually occurred.
* @return true on success (or timeout, if all `what[].occurred` are returned as 0),
* false otherwise
*/
[[nodiscard]] virtual bool WaitMany(std::chrono::milliseconds timeout,
EventsPerSock& events_per_sock) const;
/* Higher level, convenience, methods. These may throw. */
/**
* Send the given data, retrying on transient errors.
* @param[in] data Data to send.
* @param[in] timeout Timeout for the entire operation.
* @param[in] interrupt If this is signaled then the operation is canceled.
* @throws std::runtime_error if the operation cannot be completed. In this case only some of
* the data will be written to the socket.
*/
virtual void SendComplete(Span<const unsigned char> data,
std::chrono::milliseconds timeout,
CThreadInterrupt& interrupt) const;
/**
* Convenience method, equivalent to `SendComplete(MakeUCharSpan(data), timeout, interrupt)`.
*/
virtual void SendComplete(Span<const char> data,
std::chrono::milliseconds timeout,
CThreadInterrupt& interrupt) const;
/**
* Read from socket until a terminator character is encountered. Will never consume bytes past
* the terminator from the socket.
* @param[in] terminator Character up to which to read from the socket.
* @param[in] timeout Timeout for the entire operation.
* @param[in] interrupt If this is signaled then the operation is canceled.
* @param[in] max_data The maximum amount of data (in bytes) to receive. If this many bytes
* are received and there is still no terminator, then this method will throw an exception.
* @return The data that has been read, without the terminating character.
* @throws std::runtime_error if the operation cannot be completed. In this case some bytes may
* have been consumed from the socket.
*/
[[nodiscard]] virtual std::string RecvUntilTerminator(uint8_t terminator,
std::chrono::milliseconds timeout,
CThreadInterrupt& interrupt,
size_t max_data) const;
/**
* Check if still connected.
* @param[out] errmsg The error string, if the socket has been disconnected.
* @return true if connected
*/
[[nodiscard]] virtual bool IsConnected(std::string& errmsg) const;
/**
* Check if the internal socket is equal to `s`. Use only in tests.
*/
bool operator==(SOCKET s) const;
protected:
/**
* Contained socket. `INVALID_SOCKET` designates the object is empty.
*/
SOCKET m_socket;
private:
/**
* Close `m_socket` if it is not `INVALID_SOCKET`.
*/
void Close();
};
/** Return readable error string for a network error code */
std::string NetworkErrorString(int err);
#endif // BITCOIN_UTIL_SOCK_H