emacs/lisp/thingatpt.el

779 lines
28 KiB
EmacsLisp

;;; thingatpt.el --- get the `thing' at point -*- lexical-binding:t -*-
;; Copyright (C) 1991-1998, 2000-2024 Free Software Foundation, Inc.
;; Author: Mike Williams <mikew@gopher.dosli.govt.nz>
;; Maintainer: emacs-devel@gnu.org
;; Keywords: extensions, matching, mouse
;; Created: Thu Mar 28 13:48:23 1991
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; This file provides routines for getting the "thing" at the location of
;; point, whatever that "thing" happens to be. The "thing" is defined by
;; its beginning and end positions in the buffer.
;;
;; The function bounds-of-thing-at-point finds the beginning and end
;; positions by moving first forward to the end of the "thing", and then
;; backwards to the beginning. By default, it uses the corresponding
;; forward-"thing" operator (e.g. forward-word, forward-line).
;;
;; Special cases are allowed for using properties associated with the named
;; "thing":
;;
;; forward-op Function to call to skip forward over a "thing" (or
;; with a negative argument, backward).
;;
;; beginning-op Function to call to skip to the beginning of a "thing".
;; end-op Function to call to skip to the end of a "thing".
;;
;; For simple things, defined as sequences of specific kinds of characters,
;; use macro define-thing-chars.
;;
;; Reliance on existing operators means that many `things' can be accessed
;; without further code: eg.
;; (thing-at-point 'line)
;; (thing-at-point 'page)
;;; Code:
(provide 'thingatpt)
(defvar thing-at-point-provider-alist nil
"Alist of providers for returning a \"thing\" at point.
This variable can be set globally, or appended to buffer-locally
by modes, to provide functions that will return a \"thing\" at
point. The first provider for the \"thing\" that returns a
non-nil value wins.
For instance, a major mode could say:
\(setq-local thing-at-point-provider-alist
(append thing-at-point-provider-alist
\\='((url . my-mode--url-at-point))))
to provide a way to get an `url' at point in that mode. The
provider functions are called with no parameters at the point in
question.
\"things\" include `symbol', `list', `sexp', `defun', `filename',
`existing-filename', `url', `email', `uuid', `word', `sentence',
`whitespace', `line', `face' and `page'.")
;; Basic movement
;;;###autoload
(defun forward-thing (thing &optional n)
"Move forward to the end of the Nth next THING.
THING should be a symbol specifying a type of syntactic entity.
Possibilities include `symbol', `list', `sexp', `defun', `number',
`filename', `url', `email', `uuid', `word', `sentence', `whitespace',
`line', and `page'."
(let ((forward-op (or (get thing 'forward-op)
(intern-soft (format "forward-%s" thing)))))
(if (functionp forward-op)
(funcall forward-op (or n 1))
(error "Can't determine how to move over a %s" thing))))
;; General routines
;;;###autoload
(defun bounds-of-thing-at-point (thing)
"Determine the start and end buffer locations for the THING at point.
THING should be a symbol specifying a type of syntactic entity.
Possibilities include `symbol', `list', `sexp', `defun', `number',
`filename', `url', `email', `uuid', `word', `sentence', `whitespace',
`line', and `page'.
See the file `thingatpt.el' for documentation on how to define a
valid THING.
Return a cons cell (START . END) giving the start and end
positions of the thing found."
(cond
((get thing 'bounds-of-thing-at-point)
(funcall (get thing 'bounds-of-thing-at-point)))
;; If the buffer is totally empty, give up.
((and (not (eq thing 'whitespace))
(save-excursion
(goto-char (point-min))
(not (re-search-forward "[^\t\n ]" nil t))))
nil)
;; Find the thing.
(t
(let ((orig (point)))
(ignore-errors
(save-excursion
;; Try moving forward, then back.
(funcall ;; First move to end.
(or (get thing 'end-op)
(lambda () (forward-thing thing 1))))
(funcall ;; Then move to beg.
(or (get thing 'beginning-op)
(lambda () (forward-thing thing -1))))
(let ((beg (point)))
(if (<= beg orig)
;; If that brings us all the way back to ORIG,
;; it worked. But END may not be the real end.
;; So find the real end that corresponds to BEG.
;; FIXME: in which cases can `real-end' differ from `end'?
(let ((real-end
(progn
(funcall
(or (get thing 'end-op)
(lambda () (forward-thing thing 1))))
(point))))
(when (and (<= orig real-end) (< beg real-end))
(cons beg real-end)))
(goto-char orig)
;; Try a second time, moving backward first and then forward,
;; so that we can find a thing that ends at ORIG.
(funcall ;; First, move to beg.
(or (get thing 'beginning-op)
(lambda () (forward-thing thing -1))))
(funcall ;; Then move to end.
(or (get thing 'end-op)
(lambda () (forward-thing thing 1))))
(let ((end (point))
(real-beg
(progn
(funcall
(or (get thing 'beginning-op)
(lambda () (forward-thing thing -1))))
(point))))
(if (and (<= real-beg orig) (<= orig end) (< real-beg end))
(cons real-beg end)))))))))))
;;;###autoload
(defun thing-at-point (thing &optional no-properties)
"Return the THING at point.
THING should be a symbol specifying a type of syntactic entity.
Possibilities include `symbol', `list', `sexp', `defun',
`filename', `existing-filename', `url', `email', `uuid', `word',
`sentence', `whitespace', `line', `number', `face' and `page'.
When the optional argument NO-PROPERTIES is non-nil,
strip text properties from the return value.
See the file `thingatpt.el' for documentation on how to define
a symbol as a valid THING."
(let ((text
(cond
((let ((alist thing-at-point-provider-alist)
elt result)
(while (and alist (null result))
(setq elt (car alist)
alist (cdr alist))
(and (eq (car elt) thing)
(setq result (funcall (cdr elt)))))
result))
((get thing 'thing-at-point)
(funcall (get thing 'thing-at-point)))
(t
(let ((bounds (bounds-of-thing-at-point thing)))
(when bounds
(buffer-substring (car bounds) (cdr bounds))))))))
(when (and text no-properties (sequencep text))
(set-text-properties 0 (length text) nil text))
text))
;;;###autoload
(defun bounds-of-thing-at-mouse (event thing)
"Determine start and end locations for THING at mouse click given by EVENT.
Like `bounds-of-thing-at-point', but tries to use the position in EVENT
where the mouse button is clicked to find the thing nearby."
(save-excursion
(mouse-set-point event)
(bounds-of-thing-at-point thing)))
;;;###autoload
(defun thing-at-mouse (event thing &optional no-properties)
"Return the THING at mouse click specified by EVENT.
Like `thing-at-point', but tries to use the position in EVENT
where the mouse button is clicked to find the thing nearby."
(save-excursion
(mouse-set-point event)
(thing-at-point thing no-properties)))
;; Go to beginning/end
(defun beginning-of-thing (thing)
"Move point to the beginning of THING.
The bounds of THING are determined by `bounds-of-thing-at-point'."
(let ((bounds (bounds-of-thing-at-point thing)))
(or bounds (error "No %s here" thing))
(goto-char (car bounds))))
(defun end-of-thing (thing)
"Move point to the end of THING.
The bounds of THING are determined by `bounds-of-thing-at-point'."
(let ((bounds (bounds-of-thing-at-point thing)))
(or bounds (error "No %s here" thing))
(goto-char (cdr bounds))))
;; Special cases
;; Lines
;; bolp will be false when you click on the last line in the buffer
;; and it has no final newline.
(put 'line 'beginning-op
(lambda () (if (bolp) (forward-line -1) (beginning-of-line))))
;; Strings
(put 'string 'bounds-of-thing-at-point 'thing-at-point-bounds-of-string-at-point)
(defun thing-at-point-bounds-of-string-at-point ()
"Return the bounds of the string at point.
Prefer the enclosing string with fallback on sexp at point.
\[Internal function used by `bounds-of-thing-at-point'.]"
(save-excursion
(let ((ppss (syntax-ppss)))
(if (nth 3 ppss)
;; Inside the string
(ignore-errors
(goto-char (nth 8 ppss))
(cons (point) (progn (forward-sexp) (point))))
;; At the beginning of the string
(if (let ((ca (char-after)))
(and ca (eq (char-syntax ca) ?\")))
(let ((bound (bounds-of-thing-at-point 'sexp)))
(and bound
(<= (car bound) (point)) (< (point) (cdr bound))
bound)))))))
(defun in-string-p ()
"Return non-nil if point is in a string."
(declare (obsolete "use (nth 3 (syntax-ppss)) instead." "25.1"))
(let ((orig (point)))
(save-excursion
(beginning-of-defun)
(nth 3 (parse-partial-sexp (point) orig)))))
;; Sexps
(defun thing-at-point--end-of-sexp ()
"Move point to the end of the current sexp."
(let ((char-syntax (syntax-after (point))))
(if (or (eq char-syntax ?\))
(and (eq char-syntax ?\") (nth 3 (syntax-ppss))))
(forward-char 1)
(condition-case _
(forward-sexp 1)
(scan-error nil)))))
(define-obsolete-function-alias 'end-of-sexp
'thing-at-point--end-of-sexp "25.1"
"This is an internal thingatpt function and should not be used.")
(put 'sexp 'end-op 'thing-at-point--end-of-sexp)
(defun thing-at-point--beginning-of-sexp ()
"Move point to the beginning of the current sexp."
(let ((char-syntax (char-syntax (char-before))))
(if (or (eq char-syntax ?\()
(and (eq char-syntax ?\") (nth 3 (syntax-ppss))))
(forward-char -1)
(forward-sexp -1))))
(define-obsolete-function-alias 'beginning-of-sexp
'thing-at-point--beginning-of-sexp "25.1"
"This is an internal thingatpt function and should not be used.")
(put 'sexp 'beginning-op 'thing-at-point--beginning-of-sexp)
;; Symbols
(put 'symbol 'beginning-op 'thing-at-point--beginning-of-symbol)
(defun thing-at-point--beginning-of-symbol ()
"Move point to the beginning of the current symbol."
(and (re-search-backward "\\(\\sw\\|\\s_\\)+")
(skip-syntax-backward "w_")))
;; Lists
(put 'list 'bounds-of-thing-at-point 'thing-at-point-bounds-of-list-at-point)
(defun thing-at-point-bounds-of-list-at-point ()
"Return the bounds of the list at point.
Prefer the enclosing list with fallback on sexp at point.
\[Internal function used by `bounds-of-thing-at-point'.]"
(save-excursion
(if (ignore-errors (up-list -1))
(ignore-errors (cons (point) (progn (forward-sexp) (point))))
(let ((bound (bounds-of-thing-at-point 'sexp)))
(and bound
(<= (car bound) (point)) (< (point) (cdr bound))
bound)))))
;; Defuns
(put 'defun 'beginning-op 'beginning-of-defun)
(put 'defun 'end-op 'end-of-defun)
(put 'defun 'forward-op 'end-of-defun)
;; Things defined by sets of characters
(defmacro define-thing-chars (thing chars)
"Define THING as a sequence of CHARS.
E.g.:
\(define-thing-chars twitter-screen-name \"[:alnum:]_\")"
`(progn
(put ',thing 'end-op
(lambda ()
(re-search-forward (concat "\\=[" ,chars "]*") nil t)))
(put ',thing 'beginning-op
(lambda ()
(if (re-search-backward (concat "[^" ,chars "]") nil t)
(forward-char)
(goto-char (point-min)))))))
;; Filenames
(defvar thing-at-point-file-name-chars "-@~/[:alnum:]_.${}#%,:"
"Characters allowable in filenames.")
(define-thing-chars filename thing-at-point-file-name-chars)
;; Files
(defun thing-at-point-file-at-point (&optional _lax _bounds)
"Return the name of the existing file at point."
(when-let ((filename (thing-at-point 'filename)))
(setq filename (expand-file-name filename))
(and (file-exists-p filename)
filename)))
(put 'existing-filename 'bounds-of-thing-at-point
(lambda ()
(and (thing-at-point 'existing-filename)
(bounds-of-thing-at-point 'filename))))
(put 'existing-filename 'thing-at-point 'thing-at-point-file-at-point)
;; Faces
(defun thing-at-point-face-at-point (&optional _lax _bounds)
"Return the name of the face at point as a symbol."
(when-let ((face (thing-at-point 'symbol)))
(and (facep face) (intern face))))
(put 'face 'thing-at-point 'thing-at-point-face-at-point)
;; URIs
(defvar thing-at-point-beginning-of-url-regexp nil
"Regexp matching the beginning of a well-formed URI.
If nil, construct the regexp from `thing-at-point-uri-schemes'.")
(defvar thing-at-point-url-path-regexp
"[^]\t\n \"'<>[^`{}]*[^]\t\n \"'<>[^`{}.,;]+"
"Regexp matching the host and filename or e-mail part of a URL.")
(defvar thing-at-point-short-url-regexp
(concat "[-A-Za-z0-9]+\\.[-A-Za-z0-9.]+" thing-at-point-url-path-regexp)
"Regexp matching a URI without a scheme component.")
(defvar thing-at-point-uri-schemes
;; Officials from https://www.iana.org/assignments/uri-schemes.html
'("aaa://" "about:" "acap://" "apt:" "bzr://" "bzr+ssh://"
"attachment:/" "chrome://" "cid:" "content://" "crid://" "cvs://"
"data:" "dav:" "dict://" "doi:" "dns:" "dtn:" "feed:" "file:/"
"finger://" "fish://" "ftp://" "geo:" "git://" "go:" "gopher://"
"h323:" "http://" "https://" "im:" "imap://" "info:" "ipp:"
"irc://" "irc6://" "ircs://" "iris.beep:" "jar:" "ldap://"
"ldaps://" "magnet:" "mailto:" "mid:" "mtqp://" "mupdate://"
"news:" "nfs://" "nntp://" "opaquelocktoken:" "pop://" "pres:"
"resource://" "rmi://" "rsync://" "rtsp://" "rtspu://" "service:"
"sftp://" "sip:" "sips:" "smb://" "sms:" "snmp://" "soap.beep://"
"soap.beeps://" "ssh://" "svn://" "svn+ssh://" "tag:" "tel:"
"telnet://" "tftp://" "tip://" "tn3270://" "udp://" "urn:"
"uuid:" "vemmi://" "webcal://" "xri://" "xmlrpc.beep://"
"xmlrpc.beeps://" "z39.50r://" "z39.50s://" "xmpp:"
;; Unofficial
"gemini://"
;; Compatibility
"fax:" "man:" "mms://" "mmsh://" "modem:" "prospero:" "snews:"
"wais://")
"List of URI schemes recognized by `thing-at-point-url-at-point'.
Each string in this list should correspond to the start of a
URI's scheme component, up to and including the trailing // if
the scheme calls for that to be present.")
(defvar thing-at-point-markedup-url-regexp "<URL:\\([^<>\n]+\\)>"
"Regexp matching a URL marked up per RFC1738.
This kind of markup was formerly recommended as a way to indicate
URIs, but as of RFC 3986 it is no longer recommended.
Subexpression 1 should contain the delimited URL.")
(defvar thing-at-point-newsgroup-regexp
"\\`[[:lower:]]+\\.[-+[:lower:]_0-9.]+\\'"
"Regexp matching a newsgroup name.")
(defvar thing-at-point-newsgroup-heads
'("alt" "comp" "gnu" "misc" "news" "sci" "soc" "talk")
"Used by `thing-at-point-newsgroup-p' if gnus is not running.")
(defvar thing-at-point-default-mail-uri-scheme "mailto"
"Default scheme for ill-formed URIs that look like <foo@example.com>.
If nil, do not give such URIs a scheme.")
(put 'url 'bounds-of-thing-at-point 'thing-at-point-bounds-of-url-at-point)
(defun thing-at-point-bounds-of-url-at-point (&optional lax)
"Return a cons cell containing the start and end of the URI at point.
Try to find a URI using `thing-at-point-markedup-url-regexp'.
If that fails, try with `thing-at-point-beginning-of-url-regexp'.
If that also fails, and optional argument LAX is non-nil, return
the bounds of a possible ill-formed URI (one lacking a scheme)."
;; Look for the old <URL:foo> markup. If found, use it.
(or (thing-at-point--bounds-of-markedup-url)
;; Otherwise, find the bounds within which a URI may exist. The
;; method is similar to `ffap-string-at-point'. Note that URIs
;; may contain parentheses but may not contain spaces (RFC3986).
(let* ((allowed-chars "--:=&?$+@-Z_[:alpha:]~#,%;*()!'[]")
(skip-before "^[0-9a-zA-Z]")
(skip-after ":;.,!?'")
(pt (point))
(beg (save-excursion
(skip-chars-backward allowed-chars)
(skip-chars-forward skip-before pt)
(point)))
(end (save-excursion
(skip-chars-forward allowed-chars)
(skip-chars-backward skip-after pt)
(point))))
(or (thing-at-point--bounds-of-well-formed-url beg end pt)
(if lax (cons beg end))))))
(defun thing-at-point--bounds-of-markedup-url ()
(when thing-at-point-markedup-url-regexp
(let ((case-fold-search t)
(pt (point))
(beg (line-beginning-position))
(end (line-end-position))
found)
(save-excursion
(goto-char beg)
(while (and (not found)
(<= (point) pt)
(< (point) end))
(and (re-search-forward thing-at-point-markedup-url-regexp
end 1)
(> (point) pt)
(setq found t))))
(if found
(cons (match-beginning 1) (match-end 1))))))
(defun thing-at-point--bounds-of-well-formed-url (beg end pt)
(save-excursion
(goto-char beg)
(let (url-beg paren-end regexp)
(save-restriction
(narrow-to-region beg end)
;; The scheme component must either match at BEG, or have no
;; other alphanumerical ASCII characters before it.
(setq regexp (concat "\\(?:\\`\\|[^a-zA-Z0-9]\\)\\("
(or thing-at-point-beginning-of-url-regexp
(regexp-opt thing-at-point-uri-schemes))
"\\)"))
(and (re-search-forward regexp end t)
;; URI must have non-empty contents.
(< (point) end)
(setq url-beg (match-beginning 1))))
(when url-beg
;; If there is an open paren before the URI, truncate to the
;; matching close paren.
(and (> url-beg (point-min))
(eq (car-safe (syntax-after (1- url-beg))) 4)
(save-restriction
(narrow-to-region (1- url-beg) (min end (point-max)))
(setq paren-end (ignore-errors
;; Make the scan work inside comments.
(let ((parse-sexp-ignore-comments nil))
(scan-lists (1- url-beg) 1 0)))))
(not (blink-matching-check-mismatch (1- url-beg) paren-end))
(setq end (1- paren-end)))
;; Ensure PT is actually within BOUNDARY. Check the following
;; example with point on the beginning of the line:
;;
;; 3,1406710489,https://gnu.org,0,"0"
(and (<= url-beg pt end) (cons url-beg end))))))
(put 'url 'thing-at-point 'thing-at-point-url-at-point)
(defun thing-at-point-url-at-point (&optional lax bounds)
"Return the URL around or before point.
If no URL is found, return nil.
If optional argument LAX is non-nil, look for URLs that are not
well-formed, such as foo@bar or <nobody>.
If optional argument BOUNDS is non-nil, it should be a cons
cell of the form (START . END), containing the beginning and end
positions of the URI. Otherwise, these positions are detected
automatically from the text around point.
If the scheme component is absent, either because a URI delimited
with <url:...> lacks one, or because an ill-formed URI was found
with LAX or BOUNDS, try to add a scheme in the returned URI.
The scheme is chosen heuristically: \"mailto:\" if the address
looks like an email address, \"ftp://\" if it starts with
\"ftp\", etc."
(unless bounds
(setq bounds (thing-at-point-bounds-of-url-at-point lax)))
(when (and bounds (< (car bounds) (cdr bounds)))
(let ((str (buffer-substring-no-properties (car bounds) (cdr bounds))))
;; If there is no scheme component, try to add one.
(unless (string-match "\\`[a-zA-Z][-a-zA-Z0-9+.]*:" str)
(or
;; If the URI has the form <foo@bar>, treat it according to
;; `thing-at-point-default-mail-uri-scheme'. If there are
;; no angle brackets, it must be mailto.
(when (string-match "\\`[^:</>@]+@[-.0-9=&?$+A-Z_a-z~#,%;*]" str)
(let ((scheme (if (and (eq (char-before (car bounds)) ?<)
(eq (char-after (cdr bounds)) ?>))
thing-at-point-default-mail-uri-scheme
"mailto")))
(if scheme
(setq str (concat scheme ":" str)))))
;; If the string is like <FOO>, where FOO is an existing user
;; name on the system, treat that as an email address.
(and (string-match "\\`[[:alnum:]]+\\'" str)
(eq (char-before (car bounds)) ?<)
(eq (char-after (cdr bounds)) ?>)
(not (string-search "~" (expand-file-name (concat "~" str))))
(setq str (concat "mailto:" str)))
;; If it looks like news.example.com, treat it as news.
(if (thing-at-point-newsgroup-p str)
(setq str (concat "news:" str)))
;; If it looks like ftp.example.com. treat it as ftp.
(if (string-match "\\`ftp\\." str)
(setq str (concat "ftp://" str)))
;; If it looks like www.example.com. treat it as https.
(if (string-match "\\`www\\." str)
(setq str (concat "https://" str)))
;; Otherwise, it just isn't a URI.
(setq str nil)))
str)))
(defun thing-at-point-newsgroup-p (string)
"Return STRING if it looks like a newsgroup name, else nil."
(and
(string-match thing-at-point-newsgroup-regexp string)
(let ((htbs '(gnus-active-hashtb gnus-newsrc-hashtb gnus-killed-hashtb))
(heads thing-at-point-newsgroup-heads)
htb ret)
(while htbs
(setq htb (car htbs) htbs (cdr htbs))
(ignore-errors
(setq htb (symbol-value htb))
(when (cond ((obarrayp htb)
(intern-soft string htb))
((listp htb)
(member string htb))
((hash-table-p htb)
(gethash string htb)))
(setq ret string htbs nil))
;; If we made it this far, gnus is running, so ignore "heads":
(setq heads nil)))
(or ret (not heads)
(let ((head (string-match "\\`\\([[:lower:]]+\\)\\." string)))
(and head (setq head (substring string 0 (match-end 1)))
(member head heads)
(setq ret string))))
ret)))
(put 'url 'end-op (lambda () (end-of-thing 'url)))
(put 'url 'beginning-op (lambda () (beginning-of-thing 'url)))
;; The normal thingatpt mechanism doesn't work for complex regexps.
;; This should work for almost any regexp wherever we are in the
;; match. To do a perfect job for any arbitrary regexp would mean
;; testing every position before point. Regexp searches won't find
;; matches that straddle the start position so we search forwards once
;; and then back repeatedly and then back up a char at a time.
(defun thing-at-point-looking-at (regexp &optional distance)
"Return non-nil if point is in or just after a match for REGEXP.
Set the match data from the earliest such match ending at or after
point.
Optional argument DISTANCE limits search for REGEXP forward and
back from point."
(let* ((old (point))
(beg (if distance (max (point-min) (- old distance)) (point-min)))
(end (if distance (min (point-max) (+ old distance))))
prev match)
(save-excursion
(goto-char beg)
(while (and (setq prev (point)
match (re-search-forward regexp end t))
(< (match-end 0) old))
(goto-char (match-beginning 0))
;; Avoid inflooping when `regexp' matches the empty string.
(unless (< prev (point)) (forward-char))))
(and match (<= (match-beginning 0) old (match-end 0)))))
;; Email addresses
(defvar thing-at-point-email-regexp
"<?[-+_~a-zA-Z0-9/][-+_.~:a-zA-Z0-9/]*@[-a-zA-Z0-9]+[-.a-zA-Z0-9]*>?"
"A regular expression probably matching an email address.
This does not match the real name portion, only the address, optionally
with angle brackets.")
;; Haven't set 'forward-op on 'email nor defined 'forward-email' because
;; not sure they're actually needed, and URL seems to skip them too.
;; Note that (end-of-thing 'email) and (beginning-of-thing 'email)
;; work automagically, though.
(put 'email 'bounds-of-thing-at-point
(lambda ()
(let ((thing (thing-at-point-looking-at
thing-at-point-email-regexp 500)))
(if thing
(let ((beginning (match-beginning 0))
(end (match-end 0)))
(cons beginning end))))))
(put 'email 'thing-at-point
(lambda ()
(let ((boundary-pair (bounds-of-thing-at-point 'email)))
(if boundary-pair
(buffer-substring-no-properties
(car boundary-pair) (cdr boundary-pair))))))
;; Buffer and region
(put 'buffer 'end-op (lambda () (goto-char (point-max))))
(put 'buffer 'beginning-op (lambda () (goto-char (point-min))))
(put 'region 'bounds-of-thing-at-point
(lambda ()
(when (use-region-p)
(cons (region-beginning) (region-end)))))
;; UUID
(defconst thing-at-point-uuid-regexp
(rx bow
(repeat 8 hex-digit) "-"
(repeat 4 hex-digit) "-"
(repeat 4 hex-digit) "-"
(repeat 4 hex-digit) "-"
(repeat 12 hex-digit)
eow)
"A regular expression matching a UUID.
See RFC 4122 for the description of the format.")
(put 'uuid 'bounds-of-thing-at-point
(lambda ()
(when (thing-at-point-looking-at thing-at-point-uuid-regexp 36)
(cons (match-beginning 0) (match-end 0)))))
;; Aliases
(defun word-at-point (&optional no-properties)
"Return the word at point. See `thing-at-point'."
(thing-at-point 'word no-properties))
(defun sentence-at-point (&optional no-properties)
"Return the sentence at point. See `thing-at-point'."
(thing-at-point 'sentence no-properties))
(defun thing-at-point--read-from-whole-string (str)
"Read a Lisp expression from STR.
Signal an error if the entire string was not used."
(let* ((read-data (read-from-string str))
(more-left
(condition-case nil
;; The call to `ignore' suppresses a compiler warning.
(progn (ignore (read-from-string (substring str (cdr read-data))))
t)
(end-of-file nil))))
(if more-left
(error "Can't read whole string")
(car read-data))))
(define-obsolete-function-alias 'read-from-whole-string
'thing-at-point--read-from-whole-string "25.1"
"This is an internal thingatpt function and should not be used.")
(defun form-at-point (&optional thing pred)
(let* ((obj (thing-at-point (or thing 'sexp)))
(sexp (if (stringp obj)
(ignore-errors
(thing-at-point--read-from-whole-string obj))
obj)))
(if (or (not pred) (funcall pred sexp)) sexp)))
;;;###autoload
(defun sexp-at-point ()
"Return the sexp at point, or nil if none is found."
(form-at-point 'sexp))
;;;###autoload
(defun symbol-at-point ()
"Return the symbol at point, or nil if none is found."
(let ((thing (thing-at-point 'symbol)))
(if thing (intern thing))))
(defvar thing-at-point-decimal-regexp
"-?[0-9]+\\.?[0-9]*"
"A regexp matching a decimal number.")
(defvar thing-at-point-hexadecimal-regexp
"\\(0x\\|#x\\)\\([a-fA-F0-9]+\\)"
"A regexp matchin a hexadecimal number.")
;;;###autoload
(defun number-at-point ()
"Return the number at point, or nil if none is found.
Decimal numbers like \"14\" or \"-14.5\", as well as hex numbers
like \"0xBEEF09\" or \"#xBEEF09\", are recognized."
(cond
((thing-at-point-looking-at thing-at-point-hexadecimal-regexp 500)
(string-to-number
(buffer-substring (match-beginning 2) (match-end 2))
16))
((thing-at-point-looking-at thing-at-point-decimal-regexp 500)
(string-to-number
(buffer-substring (match-beginning 0) (match-end 0))))))
(put 'number 'bounds-of-thing-at-point
(lambda ()
(and (or (thing-at-point-looking-at thing-at-point-hexadecimal-regexp 500)
(thing-at-point-looking-at thing-at-point-decimal-regexp 500))
(cons (match-beginning 0) (match-end 0)))))
(put 'number 'forward-op 'forward-word)
(put 'number 'thing-at-point 'number-at-point)
;;;###autoload
(defun list-at-point (&optional ignore-comment-or-string)
"Return the Lisp list at point, or nil if none is found.
If IGNORE-COMMENT-OR-STRING is non-nil comments and strings are
treated as white space."
(let ((ppss (and ignore-comment-or-string (syntax-ppss))))
(save-excursion
(goto-char (or (nth 8 ppss) (point)))
(form-at-point 'list 'listp))))
;;; thingatpt.el ends here