ghidra/Ghidra/Features/Base/ghidra_scripts/PropagateX86ConstantReferen...

320 lines
10 KiB
Java

/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//This script propagates constants in a function creating references wherever a store or load is
//found. If a register has a value at the beginning of a function, that register value is assumed
//to be a constant.
//Any values loaded from memory are assumed to be constant.
//If a reference does not make sense on an operand, then it is added to the mnemonic.
//
//@category Analysis.X86
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Iterator;
import ghidra.app.cmd.label.AddLabelCmd;
import ghidra.app.plugin.core.analysis.ConstantPropagationContextEvaluator;
import ghidra.app.plugin.core.disassembler.AddressTable;
import ghidra.app.script.GhidraScript;
import ghidra.program.model.address.*;
import ghidra.program.model.block.*;
import ghidra.program.model.lang.Register;
import ghidra.program.model.lang.RegisterValue;
import ghidra.program.model.listing.*;
import ghidra.program.model.pcode.Varnode;
import ghidra.program.model.scalar.Scalar;
import ghidra.program.model.symbol.*;
import ghidra.program.util.SymbolicPropogator;
import ghidra.program.util.VarnodeContext;
import ghidra.util.exception.*;
public class PropagateX86ConstantReferences extends GhidraScript {
private ArrayList<Address> targetList;
private int tableSizeMax;
private Long assumeValue;
protected long tableIndexOffset;
protected boolean hitTheGuard;
@Override
public void run() throws Exception {
long numInstructions = currentProgram.getListing().getNumInstructions();
monitor.initialize((int) (numInstructions));
monitor.setMessage("Constant Propogation Markup");
// set up the address set to restrict processing
AddressSet restrictedSet = new AddressSet(currentSelection);
if (restrictedSet.isEmpty()) {
Function curFunc = currentProgram.getFunctionManager().getFunctionContaining(
currentLocation.getAddress());
if (curFunc != null) {
restrictedSet = new AddressSet(curFunc.getEntryPoint());
}
else {
restrictedSet = new AddressSet(currentLocation.getAddress());
}
}
// iterate over all functions within the restricted set
FunctionIterator fiter =
currentProgram.getFunctionManager().getFunctions(restrictedSet, true);
while (fiter.hasNext()) {
if (monitor.isCancelled()) {
break;
}
// get the function body
Function func = fiter.next();
Address start = func.getEntryPoint();
// follow all flows building up context
// use context to fill out addresses on certain instructions
// Always trust values read from writable memory
ConstantPropagationContextEvaluator eval =
new ConstantPropagationContextEvaluator(true) {
@Override
public boolean evaluateDestination(VarnodeContext context,
Instruction instruction) {
//String mnemonic = instruction.getMnemonicString();
if (!instruction.getFlowType().isJump()) {
return false;
}
if (instruction.getFlowType().isComputed()) {
// record the destination that is unknown
if (instruction.getReferencesFrom().length <= 0) {
destSet.addRange(instruction.getMinAddress(),
instruction.getMinAddress());
}
}
return false;
}
@Override
public boolean evaluateContext(VarnodeContext context, Instruction instr) {
String mnemonic = instr.getMnemonicString();
if (mnemonic.equals("LEA")) {
Register reg = instr.getRegister(0);
if (reg != null) {
BigInteger val = context.getValue(reg, false);
if (val != null) {
long lval = val.longValue();
Address refAddr = instr.getMinAddress().getNewAddress(lval);
if ((lval > 4096 || lval < 0) &&
currentProgram.getMemory().contains(refAddr)) {
if (instr.getOperandReferences(1).length == 0) {
instr.addOperandReference(1, refAddr, RefType.DATA,
SourceType.ANALYSIS);
}
}
}
}
}
return false;
}
@Override
public boolean evaluateReference(VarnodeContext context, Instruction instr,
int pcodeop, Address address, int size, RefType refType) {
return true; // just go ahead and mark up the instruction
}
};
SymbolicPropogator symEval = new SymbolicPropogator(currentProgram);
symEval.setParamRefCheck(true);
symEval.setReturnRefCheck(true);
symEval.setStoredRefCheck(true);
symEval.flowConstants(start, func.getBody(), eval, true, monitor);
// now handle symbolic execution assuming values!
eval = new ConstantPropagationContextEvaluator() {
@Override
public boolean evaluateContext(VarnodeContext context, Instruction instr) {
// find the cmpli to set the size of the table
// tableSize = size
String mnemonic = instr.getMnemonicString();
if ((mnemonic.compareToIgnoreCase("CMP") == 0)) {
int numOps = instr.getNumOperands();
if (numOps > 1) {
Register reg = instr.getRegister(numOps - 2);
if ((reg != null)) {
Scalar scalar = instr.getScalar(numOps - 1);
if (scalar != null) {
int newTableSizeMax = (int) scalar.getSignedValue() + 1;
if (newTableSizeMax > 0 && newTableSizeMax < 128) {
tableSizeMax = newTableSizeMax;
}
RegisterValue rval = context.getRegisterValue(reg);
if (rval != null) {
long lval = rval.getSignedValue().longValue();
if (lval < 0) {
tableIndexOffset = -lval;
}
}
}
}
}
}
if (instr.getFlowType().isConditional()) {
hitTheGuard = true;
}
return false;
}
@Override
public Address evaluateConstant(VarnodeContext context, Instruction instr,
int pcodeop, Address constant, int size, RefType refType) {
// don't create any references from constants, only looking for flow refs
return null;
}
@Override
public boolean evaluateReference(VarnodeContext context, Instruction instr,
int pcodeop, Address address, int size, RefType refType) {
// TODO: if ever loading from instructions in memory, must
// EXIT!
if (!(instr.getFlowType().isComputed() &&
currentProgram.getMemory().contains(address))) {
return false;
}
targetList.add(address);
return true; // just go ahead and mark up the instruction
}
@Override
public boolean followFalseConditionalBranches() {
// trying to recover jump destination, so stick with the branch that should be
// followed based on good computed constant values
return false;
}
@Override
public Long unknownValue(VarnodeContext context, Instruction instruction,
Varnode node) {
if (hitTheGuard) {
return assumeValue;
}
return null;
}
@Override
public boolean allowAccess(VarnodeContext context, Address addr) {
return true;
}
};
// now flow with the simple block of this branch....
// for each unknown branch destination,
AddressIterator iter = eval.getDestinationSet().getAddresses(true);
SimpleBlockModel model = new SimpleBlockModel(currentProgram);
while (iter.hasNext() && !monitor.isCancelled()) {
Address loc = iter.next();
CodeBlock bl = null;
try {
bl = model.getFirstCodeBlockContaining(loc, monitor);
}
catch (CancelledException e) {
break;
}
AddressSet branchSet = new AddressSet(bl);
CodeBlockReferenceIterator bliter;
try {
bliter = bl.getSources(monitor);
while (bliter.hasNext()) {
CodeBlockReference sbl = bliter.next();
if (sbl.getFlowType().isFallthrough() ||
!sbl.getFlowType().isConditional()) {
bl = sbl.getSourceBlock();
if (bl != null) {
branchSet.add(bl);
}
}
}
}
catch (CancelledException e) {
break;
}
targetList = new ArrayList<Address>();
tableSizeMax = 64;
tableIndexOffset = 0;
for (long assume = 0; assume < tableSizeMax; assume++) {
assumeValue = new Long(assume);
hitTheGuard = false;
symEval.flowConstants(branchSet.getMinAddress(), branchSet, eval, false,
monitor);
if (symEval.readExecutable()) {
break;
}
// if it didn't get it after try with 0, or 1...
if (assume > 0 && targetList.size() < 1) {
break;
}
}
// re-create the function body with the newly found code
if (targetList.size() > 1) {
AddressTable table;
table = new AddressTable(loc, targetList.toArray(new Address[0]),
currentProgram.getDefaultPointerSize(), 0, false);
table.fixupFunctionBody(currentProgram,
currentProgram.getListing().getInstructionAt(loc), monitor);
labelTable(currentProgram, loc, targetList);
}
}
}
}
private void labelTable(Program program, Address loc, ArrayList<Address> targets) {
Namespace space = null;
Instruction start_inst = program.getListing().getInstructionAt(loc);
// not putting switch into functions anymore
// program.getSymbolTable().getNamespace(start_inst.getMinAddress());
String spaceName = "switch_" + start_inst.getMinAddress();
try {
space = program.getSymbolTable().createNameSpace(program.getGlobalNamespace(),
spaceName, SourceType.ANALYSIS);
}
catch (DuplicateNameException e) {
space = program.getSymbolTable().getNamespace(spaceName, program.getGlobalNamespace());
}
catch (InvalidInputException e) {
// just go with default space
}
int tableNumber = 0;
for (Iterator<Address> iterator = targets.iterator(); iterator.hasNext();) {
Address addr = iterator.next();
AddLabelCmd lcmd = new AddLabelCmd(addr, "case_" + Long.toHexString(tableNumber), space,
SourceType.ANALYSIS);
tableNumber++;
lcmd.setNamespace(space);
lcmd.applyTo(program);
}
}
}