ghidra/Ghidra/Processors/8048/data/languages/8048.slaspec

540 lines
11 KiB
Plaintext

# sleigh specification file for Intel 8048
# Do not take BS into account when decompiling
@define SINGLE_REGISTER_BANK ""
# Treat R0-R7 as not memory mapped (implies SINGLE_REGISTER_BANK)
@define INTERNAL_REGISTERS ""
@ifdef INTERNAL_REGISTERS
@define SINGLE_REGISTER_BANK ""
@endif
define endian=little;
define alignment=1;
define space CODE type=ram_space size=2 default;
define space INTMEM type=ram_space size=1;
define space EXTMEM type=ram_space size=1;
define space PORT type=ram_space size=1;
define space register type=register_space size=1;
define register offset=0x00 size=1 [ A SP ];
@ifdef INTERNAL_REGISTERS
define register offset=0x10 size=1 [ R0 R1 R2 R3 R4 R5 R6 R7 ];
@endif
define register offset=0x20 size=2 [ PC ];
define register offset=0x30 size=1 [ C AC F0 F1 BS DFB ]; # single bit
################################################################
# Tokens
################################################################
define token opbyte (8)
opfull = (0,7)
oplo = (0,3)
ophi = (4,7)
rn = (0,2) dec
rnfill = (3,3)
ri = (0,0) dec
rifill = (1,3)
opaddr = (5,7)
addrfill = (4,4)
pp = (0,1) dec
xpp = (0,1) dec
ppfill = (2,3)
abit = (5,7) dec
abfill = (4,4)
dfb = (4,4)
bs = (4,4)
;
define token aopword (16)
aoplo = (0,3)
aaddrfill = (4,4)
aopaddr = (5,7)
adata = (8,15)
;
define token ImmedByte (8) data=(0,7);
define token AddrOne (8) addr8=(0,7);
@ifdef INTERNAL_REGISTERS
attach variables rn [ R0 R1 R2 R3 R4 R5 R6 R7 ];
attach variables ri [ R0 R1 ];
@else
attach names rn [ R0 R1 R2 R3 R4 R5 R6 R7 ];
attach names ri [ R0 R1 ];
@endif
attach names dfb [ MB0 MB1 ];
attach names bs [ RB0 RB1 ];
attach names pp [ BUS P1 P2 _ ];
attach names xpp [ P4 P5 P6 P7 ];
################################################################
# Psuedo Instructions
################################################################
define pcodeop nop;
define pcodeop enableExtInt;
define pcodeop enableTCntInt;
define pcodeop enableClockOutput;
define pcodeop disableExtInt;
define pcodeop disableTCntInt;
define pcodeop startTimer;
define pcodeop startEventCounter;
define pcodeop stopTimerAndEventCounter;
define pcodeop setTmr;
define pcodeop getTmr;
define pcodeop getT0;
define pcodeop getT1;
define pcodeop getTF;
define pcodeop getExtInt;
define pcodeop readPort;
define pcodeop writePort;
define pcodeop setBank;
################################################################
# Macros
################################################################
macro getPSW(reg) {
local tmp:1 = 0;
tmp[7,1] = C;
tmp[6,1] = AC;
tmp[5,1] = F0;
tmp[4,1] = BS;
tmp[3,1] = 1;
tmp[0,3] = (SP>>1)&7;
reg = tmp;
}
macro setPSW(reg) {
local tmp:1 = reg;
C = tmp[7,1];
AC = tmp[6,1];
F0 = tmp[5,1];
BS = tmp[4,1];
SP = 2*tmp[0,3] + 8;
}
macro savePSWtoPC(pc) {
pc[15,1] = C;
pc[14,1] = AC;
pc[13,1] = F0;
pc[12,1] = BS;
}
macro restorePSWfromPC(pc) {
C = pc[15,1];
AC = pc[14,1];
F0 = pc[13,1];
BS = pc[12,1];
}
macro push(v) {
*[INTMEM]:2 SP = v;
SP = SP + 2;
}
macro pop(v) {
SP = SP - 2;
v = *[INTMEM]:2 SP;
}
macro popPC(pc) {
pop(pc);
pc = pc & 0xfff;
}
macro popPCandPSW(pc) {
pop(pc);
restorePSWfromPC(pc);
pc = pc & 0xfff;
}
macro funcall(target) {
ret:2 = inst_next;
savePSWtoPC(ret);
push(ret);
call target;
}
macro add(dest, op1, op2, cy_in) {
local result:1 = op1 + op2 + cy_in;
local half_result:1 = (op1 & 0xf) + (op2 & 0xf) + cy_in;
C = carry(op1, op2) || carry(op1+op2, cy_in);
AC = (half_result > 0xf);
dest = result;
}
macro da(reg) {
local tmp:1 = reg;
local low:1 = 6*(AC || (tmp&0xf) > 9);
local cy1:1 = C || carry(tmp, low);
tmp = tmp + low;
local high:1 = 0x60*(cy1 || tmp > 0x99);
C = C || carry(tmp, high);
tmp = tmp + high;
reg = tmp;
}
macro rotc(cy, acc) {
local tmp:1 = cy;
A = acc;
C = tmp;
}
macro xch(node1, node2) {
local tmp:1 = node1;
node1 = node2;
node2 = tmp;
}
@ifdef SINGLE_REGISTER_BANK
macro regbank(r) { r = r; }
macro setbank(bs) {
BS = bs;
local tmp:1 = bs;
setBank(tmp);
}
@else
macro regbank(r) {
r = r + BS*0x18;
}
macro setbank(bs) {
BS = bs;
}
@endif
################################################################
Psw: "PSW" is epsilon { }
ExtInt: "I" is epsilon { }
TCntInt: "TCNTI" is epsilon { }
Clk: "CLK" is epsilon { }
Tmr: "T" is epsilon { }
Cnt: "CNT" is epsilon { }
TmrCnt: "TCNT" is epsilon { }
@ifdef INTERNAL_REGISTERS
Rn: rn is rn & rnfill=1 {
export rn;
}
Rind: @ri is ri & rifill=0 {
export ri;
}
@else
Rn: rn is rn & rnfill=1 {
local ptr:1 = rn; regbank(ptr); export *[INTMEM]:1 ptr;
}
Rind: @ri is ri & rifill=0 {
local ptr:1 = ri; regbank(ptr); export *[INTMEM]:1 ptr;
}
@endif
Ri: Rind is Rind {
export *[INTMEM]:1 Rind;
}
RiX: Rind is Rind {
export *[EXTMEM]:1 Rind;
}
PData: @A is A {
local addr:2 = inst_next; addr[0,7] = A; export *[CODE]:1 addr;
}
P3Data: @A is A {
local addr:2 = 0x300; addr[0,7] = A; export *[CODE]:1 addr;
}
AddrInd: PData is PData {
local addr:2 = inst_next; addr[0,7] = PData; export *[CODE]:1 addr;
}
Ab: abit is abit {
local bit:1 = (A>>abit)&1; export bit;
}
Data: "#"^data is data {
export *[const]:1 data;
}
Imm: Data is oplo=3; Data {
export Data;
}
Addr8: addr is addr8 [ addr = (inst_next $and 0xf00)+addr8; ] {
export *[CODE]:1 addr;
}
Addr12: addr is aopaddr & adata [ addr = (DFB*2048)+(aopaddr*256)+adata; ] {
export *[CODE]:1 addr;
}
Bus: "BUS" is epsilon {
local tmp:1 = 0; export *[PORT]:1 tmp;
}
Pp: pp is pp & ppfill=2 {
export *[PORT]:1 pp;
}
Xpp: xpp is xpp & ppfill=3 {
local tmp:1 = xpp+4; export *[PORT]:1 tmp;
}
Cc: "C" is ophi=15 {
export C;
}
Cc: "F0" is ophi=11 {
export F0;
}
Cc: "F1" is ophi=7 {
export F1;
}
Cc: "NC" is ophi=14 {
tmp:1 = !C; export tmp;
}
Cc: "NI" is ophi=8 {
tmp:1 = getExtInt(); tmp = !tmp; export tmp;
}
Cc: "NT0" is ophi=2 {
tmp:1 = getT0(); tmp = !tmp; export tmp;
}
Cc: "NT1" is ophi=4 {
tmp:1 = getT1(); tmp = !tmp; export tmp;
}
Cc: "NZ" is ophi=9 {
tmp:1 = A!=0; export tmp;
}
Cc: "TF" is ophi=1 {
tmp:1 = getTF(); export tmp;
}
Cc: "T0" is ophi=3 {
tmp:1 = getT0(); export tmp;
}
Cc: "T1" is ophi=5 {
tmp:1 = getT1(); export tmp;
}
Cc: "Z" is ophi=12 {
tmp:1 = A==0; export tmp;
}
# Conventience tables for opcodes taking both Rn and Ri (and Imm)
Rni: Rn is Rn {
export Rn;
}
Rni: Ri is Ri {
export Ri;
}
RniI: Rni is Rni {
export Rni;
}
RniI: Imm is Imm {
export Imm;
}
:ADD A,Rni is ophi=6 & (rnfill=1 | rifill=0) & A & Rni {
add(A,A,Rni,0);
}
:ADD A,Imm is (ophi=0 & A)... & Imm {
add(A,A,Imm,0);
}
:ADDC A,Rni is ophi=7 & A & (rnfill=1 | rifill=0) & Rni {
add(A,A,Rni,C);
}
:ADDC A,Imm is (ophi=1 & A)... & Imm {
add(A,A,Imm,C);
}
:ANL A,RniI is (ophi=5 & (rnfill=1 | rifill=0 | oplo=3) & A)... & RniI {
A = A & RniI;
}
:ANL Pp,Data is ophi=9 & ppfill=2 & Pp; Data {
Pp = Pp & Data;
}
:ANLD Xpp,A is ophi=9 & ppfill=3 & Xpp & A {
Xpp = Xpp & (A & 0xf);
}
:CALL Addr12 is aopaddr & aaddrfill=1 & aoplo=4 & Addr12 {
funcall(Addr12);
}
:CLR A is ophi=2 & oplo=7 & A {
A = 0;
}
:CLR C is ophi=9 & oplo=7 & C {
C = 0;
}
:CLR F0 is ophi=8 & oplo=5 & F0 {
F0 = 0;
}
:CLR F1 is ophi=10 & oplo=5 & F1 {
F1 = 0;
}
:CPL A is ophi=3 & oplo=7 & A {
A = ~A;
}
:CPL C is ophi=10 & oplo=7 & C {
C = !C;
}
:CPL F0 is ophi=9 & oplo=5 & F0 {
F0 = !F0;
}
:CPL F1 is ophi=11 & oplo=5 & F1 {
F1 = !F1;
}
:DA A is ophi=5 & oplo=7 & A {
da(A);
}
:DEC A is ophi=0 & oplo=7 & A {
A = A - 1;
}
:DEC Rn is ophi=12 & Rn {
Rn = Rn - 1;
}
:DIS ExtInt is ophi=1 & oplo=5 & ExtInt {
disableExtInt();
}
:DIS TCntInt is ophi=3 & oplo=5 & TCntInt {
disableTCntInt();
}
:DJNZ Rn,Addr8 is ophi=14 & Rn; Addr8 {
Rn = Rn - 1; if(Rn != 0) goto Addr8;
}
:EN ExtInt is ophi=0 & oplo=5 & ExtInt {
enableExtInt();
}
:EN TCntInt is ophi=2 & oplo=5 & TCntInt {
enableTCntInt();
}
:ENT0 Clk is ophi=7 & oplo=5 & Clk {
enableClockOutput();
}
:IN A,Pp is ophi=0 & pp!=0 & A & Pp {
A = Pp;
}
:INC A is ophi=1 & oplo=7 & A {
A = A + 1;
}
:INC Rni is ophi=1 & (rnfill=1 | rifill=0) & Rni {
Rni = Rni + 1;
}
:INS A,Bus is ophi=0 & oplo=8 & A & Bus {
A = Bus;
}
:JB^Ab Addr8 is oplo=2 & opaddr & abfill=1 & Ab; Addr8 {
if(Ab) goto Addr8;
}
:J^Cc Addr8 is ophi & oplo=6 & Cc; Addr8 {
if(Cc) goto Addr8;
}
:JMP Addr12 is aopaddr & aaddrfill=0 & aoplo=4 & Addr12 {
goto Addr12;
}
:JMPP AddrInd is ophi=11 & oplo=3 & AddrInd {
goto AddrInd;
}
:MOV A,Imm is (ophi=2 & A)... & Imm {
A = Imm;
}
:MOV A,Psw is ophi=12 & oplo=7 & A & Psw {
getPSW(A);
}
:MOV A,Rni is ophi=15 & A & (rnfill=1 | rifill=0) & Rni {
A = Rni;
}
:MOV A,Tmr is ophi=4 & oplo=2 & A & Tmr {
A = getTmr();
}
:MOV Psw,A is ophi=13 & oplo=7 & Psw & A {
setPSW(A);
}
:MOV Rni,A is ophi=10 & (rnfill=1 | rifill=0) & Rni & A {
Rni = A;
}
:MOV Rni,Data is ophi=11 & (rnfill=1 | rifill=0) & Rni; Data {
Rni = Data;
}
:MOV Tmr,A is ophi=6 & oplo=2 & Tmr & A {
setTmr(A);
}
:MOVD A,Xpp is ophi=0 & Xpp & A {
A = (Xpp & 0xf);
}
:MOVD Xpp,A is ophi=3 & Xpp & A {
Xpp = (A & 0xf);
}
:MOVP A,PData is ophi=10 & oplo=3 & A & PData {
A = PData;
}
:MOVP3 A,P3Data is ophi=14 & oplo=3 & A & P3Data {
A = P3Data;
}
:MOVX A,RiX is ophi=8 & A & RiX {
A = RiX;
}
:MOVX RiX,A is ophi=9 & RiX & A {
RiX = A;
}
:NOP is ophi=0 & oplo=0 {
nop();
}
:ORL A,RniI is (ophi=4 & (rnfill=1 | rifill=0 | oplo=3) & A)... & RniI {
A = A | RniI;
}
:ORL Pp,Data is ophi=8 & Pp; Data {
Pp = Pp | Data;
}
:ORLD Xpp,A is ophi=8 & Xpp & A {
Xpp = Xpp | (A & 0xf);
}
:OUTL Bus,A is ophi=0 & oplo=2 & Bus & A {
Bus = A;
}
:OUTL Pp,A is ophi=3 & pp!=0 & Pp & A {
Pp = A;
}
:RET is ophi=8 & oplo=3 {
pc:2 = 0; popPC(pc); return[pc];
}
:RETR is ophi=9 & oplo=3 {
pc:2 = 0; popPCandPSW(pc); return[pc];
}
:RL A is ophi=14 & oplo=7 & A {
A = (A<<1) | (A>>7);
}
:RLC A is ophi=15 & oplo=7 & A {
rotc((A&0x80)>>7, (A<<1)|C);
}
:RR A is ophi=7 & oplo=7 & A {
A = (A>>1) | (A<<7);
}
:RRC A is ophi=6 & oplo=7 & A {
rotc(A&1, (A>>1)|(C<<7));
}
:SEL dfb is (ophi=14 | ophi=15) & oplo=5 & dfb {
DFB = dfb;
}
:SEL bs is (ophi=12 | ophi=13) & oplo=5 & bs {
setbank(bs);
}
:STOP TmrCnt is ophi=6 & oplo=5 & TmrCnt {
stopTimerAndEventCounter();
}
:STRT Cnt is ophi=4 & oplo=5 & Cnt {
startEventCounter();
}
:STRT Tmr is ophi=5 & oplo=5 & Tmr {
startTimer();
}
:SWAP A is ophi=4 & oplo=7 & A {
A = (A<<4)|(A>>4);
}
:XCH A,Rni is ophi=2 & (rnfill=1 | rifill=0) & A & Rni {
xch(A, Rni);
}
:XCHD A,Ri is ophi=3 & A & Ri {
xch(A[0,4], Ri[0,4]);
}
:XRL A,RniI is (ophi=13 & (rnfill=1 | rifill=0 | oplo=3) & A)... & RniI {
A = A ^ RniI;
}