htop/freebsd/FreeBSDMachine.c

394 lines
13 KiB
C

/*
htop - FreeBSDMachine.c
(C) 2014 Hisham H. Muhammad
Released under the GNU GPLv2+, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h" // IWYU pragma: keep
#include "freebsd/FreeBSDMachine.h"
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <sys/_iovec.h>
#include <sys/errno.h>
#include <sys/param.h> // needs to be included before <sys/jail.h> for MAXPATHLEN
#include <sys/jail.h>
#include <sys/priority.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/vmmeter.h>
#include "CRT.h"
#include "Compat.h"
#include "Macros.h"
#include "Object.h"
#include "Scheduling.h"
#include "Settings.h"
#include "XUtils.h"
#include "generic/openzfs_sysctl.h"
#include "zfs/ZfsArcStats.h"
static int MIB_hw_physmem[2];
static int MIB_vm_stats_vm_v_page_count[4];
static int MIB_vm_stats_vm_v_wire_count[4];
static int MIB_vm_stats_vm_v_active_count[4];
static int MIB_vm_stats_vm_v_cache_count[4];
static int MIB_vm_stats_vm_v_inactive_count[4];
static int MIB_vm_stats_vm_v_free_count[4];
static int MIB_vm_vmtotal[2];
static int MIB_vfs_bufspace[2];
static int MIB_kern_cp_time[2];
static int MIB_kern_cp_times[2];
Machine* Machine_new(UsersTable* usersTable, uid_t userId) {
FreeBSDMachine* this = xCalloc(1, sizeof(FreeBSDMachine));
Machine* super = &this->super;
char errbuf[_POSIX2_LINE_MAX];
size_t len;
Machine_init(super, usersTable, userId);
// physical memory in system: hw.physmem
// physical page size: hw.pagesize
// usable pagesize : vm.stats.vm.v_page_size
len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len);
len = sizeof(this->pageSize);
if (sysctlbyname("vm.stats.vm.v_page_size", &this->pageSize, &len, NULL, 0) == -1)
CRT_fatalError("Cannot get pagesize by sysctl");
this->pageSizeKb = this->pageSize / ONE_K;
// usable page count vm.stats.vm.v_page_count
// actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size
len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len);
len = 2; sysctlnametomib("vm.vmtotal", MIB_vm_vmtotal, &len);
len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len);
openzfs_sysctl_init(&this->zfs);
openzfs_sysctl_updateArcStats(&this->zfs);
int smp = 0;
len = sizeof(smp);
if (sysctlbyname("kern.smp.active", &smp, &len, NULL, 0) != 0 || len != sizeof(smp)) {
smp = 0;
}
int cpus = 1;
len = sizeof(cpus);
if (smp) {
int err = sysctlbyname("kern.smp.cpus", &cpus, &len, NULL, 0);
if (err) {
cpus = 1;
}
} else {
cpus = 1;
}
size_t sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES;
len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len);
this->cp_time_o = xCalloc(CPUSTATES, sizeof(unsigned long));
this->cp_time_n = xCalloc(CPUSTATES, sizeof(unsigned long));
len = sizeof_cp_time_array;
// fetch initial single (or average) CPU clicks from kernel
sysctl(MIB_kern_cp_time, 2, this->cp_time_o, &len, NULL, 0);
// on smp box, fetch rest of initial CPU's clicks
if (cpus > 1) {
len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len);
this->cp_times_o = xCalloc(cpus, sizeof_cp_time_array);
this->cp_times_n = xCalloc(cpus, sizeof_cp_time_array);
len = cpus * sizeof_cp_time_array;
sysctl(MIB_kern_cp_times, 2, this->cp_times_o, &len, NULL, 0);
}
super->existingCPUs = MAXIMUM(cpus, 1);
// TODO: support offline CPUs and hot swapping
super->activeCPUs = super->existingCPUs;
if (cpus == 1 ) {
this->cpus = xRealloc(this->cpus, sizeof(CPUData));
} else {
// on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well)
this->cpus = xRealloc(this->cpus, (super->existingCPUs + 1) * sizeof(CPUData));
}
len = sizeof(this->kernelFScale);
if (sysctlbyname("kern.fscale", &this->kernelFScale, &len, NULL, 0) == -1 || this->kernelFScale <= 0) {
//sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed
this->kernelFScale = 2048;
}
this->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf);
if (this->kd == NULL) {
CRT_fatalError("kvm_openfiles() failed");
}
return super;
}
void Machine_delete(Machine* super) {
FreeBSDMachine* this = (FreeBSDMachine*) super;
Machine_done(super);
if (this->kd) {
kvm_close(this->kd);
}
free(this->cp_time_o);
free(this->cp_time_n);
free(this->cp_times_o);
free(this->cp_times_n);
free(this->cpus);
free(this);
}
static inline void FreeBSDMachine_scanCPU(Machine* super) {
const FreeBSDMachine* this = (FreeBSDMachine*) super;
unsigned int cpus = super->existingCPUs; // actual CPU count
unsigned int maxcpu = cpus; // max iteration (in case we have average + smp)
int cp_times_offset;
assert(cpus > 0);
size_t sizeof_cp_time_array;
unsigned long* cp_time_n; // old clicks state
unsigned long* cp_time_o; // current clicks state
unsigned long cp_time_d[CPUSTATES];
double cp_time_p[CPUSTATES];
// get averages or single CPU clicks
sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES;
sysctl(MIB_kern_cp_time, 2, this->cp_time_n, &sizeof_cp_time_array, NULL, 0);
// get rest of CPUs
if (cpus > 1) {
// on smp systems FreeBSD kernel concats all CPU states into one long array in
// kern.cp_times sysctl OID
// we store averages in this->cpus[0], and actual cores after that
maxcpu = cpus + 1;
sizeof_cp_time_array = cpus * sizeof(unsigned long) * CPUSTATES;
sysctl(MIB_kern_cp_times, 2, this->cp_times_n, &sizeof_cp_time_array, NULL, 0);
}
for (unsigned int i = 0; i < maxcpu; i++) {
if (cpus == 1) {
// single CPU box
cp_time_n = this->cp_time_n;
cp_time_o = this->cp_time_o;
} else {
if (i == 0 ) {
// average
cp_time_n = this->cp_time_n;
cp_time_o = this->cp_time_o;
} else {
// specific smp cores
cp_times_offset = i - 1;
cp_time_n = this->cp_times_n + (cp_times_offset * CPUSTATES);
cp_time_o = this->cp_times_o + (cp_times_offset * CPUSTATES);
}
}
// diff old vs new
unsigned long long total_o = 0;
unsigned long long total_n = 0;
unsigned long long total_d = 0;
for (int s = 0; s < CPUSTATES; s++) {
cp_time_d[s] = cp_time_n[s] - cp_time_o[s];
total_o += cp_time_o[s];
total_n += cp_time_n[s];
}
// totals
total_d = total_n - total_o;
if (total_d < 1 ) {
total_d = 1;
}
// save current state as old and calc percentages
for (int s = 0; s < CPUSTATES; ++s) {
cp_time_o[s] = cp_time_n[s];
cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100;
}
CPUData* cpuData = &(this->cpus[i]);
cpuData->userPercent = cp_time_p[CP_USER];
cpuData->nicePercent = cp_time_p[CP_NICE];
cpuData->systemPercent = cp_time_p[CP_SYS];
cpuData->irqPercent = cp_time_p[CP_INTR];
cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR];
// this one is not really used
//cpuData->idlePercent = cp_time_p[CP_IDLE];
cpuData->temperature = NAN;
cpuData->frequency = NAN;
const int coreId = (cpus == 1) ? 0 : ((int)i - 1);
if (coreId < 0)
continue;
// TODO: test with hyperthreading and multi-cpu systems
if (super->settings->showCPUTemperature) {
int temperature;
size_t len = sizeof(temperature);
char mibBuffer[32];
xSnprintf(mibBuffer, sizeof(mibBuffer), "dev.cpu.%d.temperature", coreId);
int r = sysctlbyname(mibBuffer, &temperature, &len, NULL, 0);
if (r == 0)
cpuData->temperature = (double)(temperature - 2732) / 10.0; // convert from deci-Kelvin to Celsius
}
// TODO: test with hyperthreading and multi-cpu systems
if (super->settings->showCPUFrequency) {
int frequency;
size_t len = sizeof(frequency);
char mibBuffer[32];
xSnprintf(mibBuffer, sizeof(mibBuffer), "dev.cpu.%d.freq", coreId);
int r = sysctlbyname(mibBuffer, &frequency, &len, NULL, 0);
if (r == 0)
cpuData->frequency = frequency; // keep in MHz
}
}
// calculate max temperature and avg frequency for average meter and
// propagate frequency to all cores if only supplied for CPU 0
if (cpus > 1) {
if (super->settings->showCPUTemperature) {
double maxTemp = -HUGE_VAL;
for (unsigned int i = 1; i < maxcpu; i++) {
if (isgreater(this->cpus[i].temperature, maxTemp)) {
maxTemp = this->cpus[i].temperature;
this->cpus[0].temperature = maxTemp;
}
}
}
if (super->settings->showCPUFrequency) {
const double coreZeroFreq = this->cpus[1].frequency;
double freqSum = coreZeroFreq;
if (isNonnegative(coreZeroFreq)) {
for (unsigned int i = 2; i < maxcpu; i++) {
if (!isNonnegative(this->cpus[i].frequency))
this->cpus[i].frequency = coreZeroFreq;
freqSum += this->cpus[i].frequency;
}
this->cpus[0].frequency = freqSum / (maxcpu - 1);
}
}
}
}
static void FreeBSDMachine_scanMemoryInfo(Machine* super) {
FreeBSDMachine* this = (FreeBSDMachine*) super;
// @etosan:
// memory counter relationships seem to be these:
// total = active + wired + inactive + cache + free
// htop_used (unavail to anybody) = active + wired
// htop_cache (for cache meter) = buffers + cache
// user_free (avail to procs) = buffers + inactive + cache + free
//
// with ZFS ARC situation becomes bit muddled, as ARC behaves like "user_free"
// and belongs into cache, but is reported as wired by kernel
//
// htop_used = active + (wired - arc)
// htop_cache = buffers + cache + arc
u_long totalMem;
u_int memActive, memWire, cachedMem;
long buffersMem;
size_t len;
struct vmtotal vmtotal;
//disabled for now, as it is always smaller than phycal amount of memory...
//...to avoid "where is my memory?" questions
//sysctl(MIB_vm_stats_vm_v_page_count, 4, &(super->totalMem), &len, NULL, 0);
//super->totalMem *= this->pageSizeKb;
len = sizeof(totalMem);
sysctl(MIB_hw_physmem, 2, &(totalMem), &len, NULL, 0);
totalMem /= 1024;
super->totalMem = totalMem;
len = sizeof(memActive);
sysctl(MIB_vm_stats_vm_v_active_count, 4, &(memActive), &len, NULL, 0);
memActive *= this->pageSizeKb;
this->memActive = memActive;
len = sizeof(memWire);
sysctl(MIB_vm_stats_vm_v_wire_count, 4, &(memWire), &len, NULL, 0);
memWire *= this->pageSizeKb;
this->memWire = memWire;
len = sizeof(buffersMem);
sysctl(MIB_vfs_bufspace, 2, &(buffersMem), &len, NULL, 0);
buffersMem /= 1024;
super->buffersMem = buffersMem;
len = sizeof(cachedMem);
sysctl(MIB_vm_stats_vm_v_cache_count, 4, &(cachedMem), &len, NULL, 0);
cachedMem *= this->pageSizeKb;
super->cachedMem = cachedMem;
len = sizeof(vmtotal);
sysctl(MIB_vm_vmtotal, 2, &(vmtotal), &len, NULL, 0);
super->sharedMem = vmtotal.t_rmshr * this->pageSizeKb;
super->usedMem = this->memActive + this->memWire;
struct kvm_swap swap[16];
int nswap = kvm_getswapinfo(this->kd, swap, ARRAYSIZE(swap), 0);
super->totalSwap = 0;
super->usedSwap = 0;
for (int i = 0; i < nswap; i++) {
super->totalSwap += swap[i].ksw_total;
super->usedSwap += swap[i].ksw_used;
}
super->totalSwap *= this->pageSizeKb;
super->usedSwap *= this->pageSizeKb;
}
void Machine_scan(Machine* super) {
FreeBSDMachine* this = (FreeBSDMachine*) super;
openzfs_sysctl_updateArcStats(&this->zfs);
FreeBSDMachine_scanMemoryInfo(super);
FreeBSDMachine_scanCPU(super);
}
bool Machine_isCPUonline(const Machine* host, unsigned int id) {
assert(id < host->existingCPUs);
// TODO: support offline CPUs and hot swapping
(void) host; (void) id;
return true;
}