htop/netbsd/NetBSDMachine.c

286 lines
8.0 KiB
C

/*
htop - NetBSDMachine.c
(C) 2014 Hisham H. Muhammad
(C) 2015 Michael McConville
(C) 2021 Santhosh Raju
(C) 2021 htop dev team
Released under the GNU GPLv2+, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h" // IWYU pragma: keep
#include "netbsd/NetBSDMachine.h"
#include <kvm.h>
#include <math.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mount.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/swap.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <uvm/uvm_extern.h>
#include "CRT.h"
#include "Machine.h"
#include "Macros.h"
#include "Object.h"
#include "Settings.h"
#include "XUtils.h"
static const struct {
const char* name;
long int scale;
} freqSysctls[] = {
{ "machdep.est.frequency.current", 1 },
{ "machdep.powernow.frequency.current", 1 },
{ "machdep.intrepid.frequency.current", 1 },
{ "machdep.loongson.frequency.current", 1 },
{ "machdep.cpu.frequency.current", 1 },
{ "machdep.frequency.current", 1 },
{ "machdep.tsc_freq", 1000000 },
};
static void NetBSDMachine_updateCPUcount(NetBSDMachine* this) {
Machine* super = &this->super;
// Definitions for sysctl(3), cf. https://nxr.netbsd.org/xref/src/sys/sys/sysctl.h#813
const int mib_ncpu_existing[] = { CTL_HW, HW_NCPU }; // Number of existing CPUs
const int mib_ncpu_online[] = { CTL_HW, HW_NCPUONLINE }; // Number of online/active CPUs
int r;
unsigned int value;
size_t size;
bool change = false;
// Query the number of active/online CPUs.
size = sizeof(value);
r = sysctl(mib_ncpu_online, 2, &value, &size, NULL, 0);
if (r < 0 || value < 1) {
value = 1;
}
if (value != super->activeCPUs) {
super->activeCPUs = value;
change = true;
}
// Query the total number of CPUs.
size = sizeof(value);
r = sysctl(mib_ncpu_existing, 2, &value, &size, NULL, 0);
if (r < 0 || value < 1) {
value = super->activeCPUs;
}
if (value != super->existingCPUs) {
this->cpuData = xReallocArray(this->cpuData, value + 1, sizeof(CPUData));
super->existingCPUs = value;
change = true;
}
// Reset CPU stats when number of online/existing CPU cores changed
if (change) {
CPUData* dAvg = &this->cpuData[0];
memset(dAvg, '\0', sizeof(CPUData));
dAvg->totalTime = 1;
dAvg->totalPeriod = 1;
for (unsigned int i = 0; i < super->existingCPUs; i++) {
CPUData* d = &this->cpuData[i + 1];
memset(d, '\0', sizeof(CPUData));
d->totalTime = 1;
d->totalPeriod = 1;
}
}
}
Machine* Machine_new(UsersTable* usersTable, uid_t userId) {
const int fmib[] = { CTL_KERN, KERN_FSCALE };
size_t size;
char errbuf[_POSIX2_LINE_MAX];
NetBSDMachine* this = xCalloc(1, sizeof(NetBSDMachine));
Machine* super = &this->super;
Machine_init(super, usersTable, userId);
NetBSDMachine_updateCPUcount(this);
size = sizeof(this->fscale);
if (sysctl(fmib, 2, &this->fscale, &size, NULL, 0) < 0 || this->fscale <= 0) {
CRT_fatalError("fscale sysctl call failed");
}
if ((this->pageSize = sysconf(_SC_PAGESIZE)) == -1)
CRT_fatalError("pagesize sysconf call failed");
this->pageSizeKB = this->pageSize / ONE_K;
this->kd = kvm_openfiles(NULL, NULL, NULL, KVM_NO_FILES, errbuf);
if (this->kd == NULL) {
CRT_fatalError("kvm_openfiles() failed");
}
return super;
}
void Machine_delete(Machine* super) {
NetBSDMachine* this = (NetBSDMachine*) super;
Machine_done(super);
if (this->kd) {
kvm_close(this->kd);
}
free(this->cpuData);
free(this);
}
static void NetBSDMachine_scanMemoryInfo(NetBSDMachine* this) {
Machine* super = &this->super;
static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP2};
struct uvmexp_sysctl uvmexp;
size_t size_uvmexp = sizeof(uvmexp);
if (sysctl(uvmexp_mib, 2, &uvmexp, &size_uvmexp, NULL, 0) < 0) {
CRT_fatalError("uvmexp sysctl call failed");
}
super->totalMem = uvmexp.npages * this->pageSizeKB;
super->buffersMem = 0;
super->cachedMem = (uvmexp.filepages + uvmexp.execpages) * this->pageSizeKB;
super->usedMem = (uvmexp.active + uvmexp.wired) * this->pageSizeKB;
super->totalSwap = uvmexp.swpages * this->pageSizeKB;
super->usedSwap = uvmexp.swpginuse * this->pageSizeKB;
}
static void getKernelCPUTimes(int cpuId, u_int64_t* times) {
const int mib[] = { CTL_KERN, KERN_CP_TIME, cpuId };
size_t length = sizeof(*times) * CPUSTATES;
if (sysctl(mib, 3, times, &length, NULL, 0) == -1 || length != sizeof(*times) * CPUSTATES) {
CRT_fatalError("sysctl kern.cp_time2 failed");
}
}
static void kernelCPUTimesToHtop(const u_int64_t* times, CPUData* cpu) {
unsigned long long totalTime = 0;
for (int i = 0; i < CPUSTATES; i++) {
totalTime += times[i];
}
unsigned long long sysAllTime = times[CP_INTR] + times[CP_SYS];
cpu->totalPeriod = saturatingSub(totalTime, cpu->totalTime);
cpu->userPeriod = saturatingSub(times[CP_USER], cpu->userTime);
cpu->nicePeriod = saturatingSub(times[CP_NICE], cpu->niceTime);
cpu->sysPeriod = saturatingSub(times[CP_SYS], cpu->sysTime);
cpu->sysAllPeriod = saturatingSub(sysAllTime, cpu->sysAllTime);
cpu->intrPeriod = saturatingSub(times[CP_INTR], cpu->intrTime);
cpu->idlePeriod = saturatingSub(times[CP_IDLE], cpu->idleTime);
cpu->totalTime = totalTime;
cpu->userTime = times[CP_USER];
cpu->niceTime = times[CP_NICE];
cpu->sysTime = times[CP_SYS];
cpu->sysAllTime = sysAllTime;
cpu->intrTime = times[CP_INTR];
cpu->idleTime = times[CP_IDLE];
}
static void NetBSDMachine_scanCPUTime(NetBSDMachine* this) {
const Machine* super = &this->super;
u_int64_t kernelTimes[CPUSTATES] = {0};
u_int64_t avg[CPUSTATES] = {0};
for (unsigned int i = 0; i < super->existingCPUs; i++) {
getKernelCPUTimes(i, kernelTimes);
CPUData* cpu = &this->cpuData[i + 1];
kernelCPUTimesToHtop(kernelTimes, cpu);
avg[CP_USER] += cpu->userTime;
avg[CP_NICE] += cpu->niceTime;
avg[CP_SYS] += cpu->sysTime;
avg[CP_INTR] += cpu->intrTime;
avg[CP_IDLE] += cpu->idleTime;
}
for (int i = 0; i < CPUSTATES; i++) {
avg[i] /= super->activeCPUs;
}
kernelCPUTimesToHtop(avg, &this->cpuData[0]);
}
static void NetBSDMachine_scanCPUFrequency(NetBSDMachine* this) {
const Machine* super = &this->super;
unsigned int cpus = super->existingCPUs;
bool match = false;
char name[64];
long int freq = 0;
size_t freqSize;
for (unsigned int i = 0; i < cpus; i++) {
this->cpuData[i + 1].frequency = NAN;
}
/* newer hardware supports per-core frequency, for e.g. ARM big.LITTLE */
for (unsigned int i = 0; i < cpus; i++) {
xSnprintf(name, sizeof(name), "machdep.cpufreq.cpu%u.current", i);
freqSize = sizeof(freq);
if (sysctlbyname(name, &freq, &freqSize, NULL, 0) != -1) {
this->cpuData[i + 1].frequency = freq; /* already in MHz */
match = true;
}
}
if (match) {
return;
}
/*
* Iterate through legacy sysctl nodes for single-core frequency until
* we find a match...
*/
for (size_t i = 0; i < ARRAYSIZE(freqSysctls); i++) {
freqSize = sizeof(freq);
if (sysctlbyname(freqSysctls[i].name, &freq, &freqSize, NULL, 0) != -1) {
freq /= freqSysctls[i].scale; /* scale to MHz */
match = true;
break;
}
}
if (match) {
for (unsigned int i = 0; i < cpus; i++) {
this->cpuData[i + 1].frequency = freq;
}
}
}
void Machine_scan(Machine* super) {
NetBSDMachine* this = (NetBSDMachine*) super;
NetBSDMachine_scanMemoryInfo(this);
NetBSDMachine_scanCPUTime(this);
if (super->settings->showCPUFrequency) {
NetBSDMachine_scanCPUFrequency(this);
}
}
bool Machine_isCPUonline(const Machine* host, unsigned int id) {
assert(id < host->existingCPUs);
(void)host; (void)id;
// TODO: Support detecting online / offline CPUs.
return true;
}