htop/openbsd/Platform.c

401 lines
11 KiB
C

/*
htop - openbsd/Platform.c
(C) 2014 Hisham H. Muhammad
(C) 2015 Michael McConville
Released under the GNU GPLv2+, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h" // IWYU pragma: keep
#include "openbsd/Platform.h"
#include <errno.h>
#include <kvm.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/signal.h> // needs to be included before <sys/proc.h> for 'struct sigaltstack'
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/sensors.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <uvm/uvmexp.h>
#include "CPUMeter.h"
#include "ClockMeter.h"
#include "DateMeter.h"
#include "DateTimeMeter.h"
#include "FileDescriptorMeter.h"
#include "HostnameMeter.h"
#include "LoadAverageMeter.h"
#include "Macros.h"
#include "MemoryMeter.h"
#include "MemorySwapMeter.h"
#include "Meter.h"
#include "Settings.h"
#include "SignalsPanel.h"
#include "SwapMeter.h"
#include "SysArchMeter.h"
#include "TasksMeter.h"
#include "UptimeMeter.h"
#include "XUtils.h"
#include "openbsd/OpenBSDMachine.h"
#include "openbsd/OpenBSDProcess.h"
const ScreenDefaults Platform_defaultScreens[] = {
{
.name = "Main",
.columns = "PID USER PRIORITY NICE M_VIRT M_RESIDENT STATE PERCENT_CPU PERCENT_MEM TIME Command",
.sortKey = "PERCENT_CPU",
},
};
const unsigned int Platform_numberOfDefaultScreens = ARRAYSIZE(Platform_defaultScreens);
/*
* See /usr/include/sys/signal.h
*/
const SignalItem Platform_signals[] = {
{ .name = " 0 Cancel", .number = 0 },
{ .name = " 1 SIGHUP", .number = 1 },
{ .name = " 2 SIGINT", .number = 2 },
{ .name = " 3 SIGQUIT", .number = 3 },
{ .name = " 4 SIGILL", .number = 4 },
{ .name = " 5 SIGTRAP", .number = 5 },
{ .name = " 6 SIGABRT", .number = 6 },
{ .name = " 6 SIGIOT", .number = 6 },
{ .name = " 7 SIGEMT", .number = 7 },
{ .name = " 8 SIGFPE", .number = 8 },
{ .name = " 9 SIGKILL", .number = 9 },
{ .name = "10 SIGBUS", .number = 10 },
{ .name = "11 SIGSEGV", .number = 11 },
{ .name = "12 SIGSYS", .number = 12 },
{ .name = "13 SIGPIPE", .number = 13 },
{ .name = "14 SIGALRM", .number = 14 },
{ .name = "15 SIGTERM", .number = 15 },
{ .name = "16 SIGURG", .number = 16 },
{ .name = "17 SIGSTOP", .number = 17 },
{ .name = "18 SIGTSTP", .number = 18 },
{ .name = "19 SIGCONT", .number = 19 },
{ .name = "20 SIGCHLD", .number = 20 },
{ .name = "21 SIGTTIN", .number = 21 },
{ .name = "22 SIGTTOU", .number = 22 },
{ .name = "23 SIGIO", .number = 23 },
{ .name = "24 SIGXCPU", .number = 24 },
{ .name = "25 SIGXFSZ", .number = 25 },
{ .name = "26 SIGVTALRM", .number = 26 },
{ .name = "27 SIGPROF", .number = 27 },
{ .name = "28 SIGWINCH", .number = 28 },
{ .name = "29 SIGINFO", .number = 29 },
{ .name = "30 SIGUSR1", .number = 30 },
{ .name = "31 SIGUSR2", .number = 31 },
{ .name = "32 SIGTHR", .number = 32 },
};
const unsigned int Platform_numberOfSignals = ARRAYSIZE(Platform_signals);
const MeterClass* const Platform_meterTypes[] = {
&CPUMeter_class,
&ClockMeter_class,
&DateMeter_class,
&DateTimeMeter_class,
&LoadAverageMeter_class,
&LoadMeter_class,
&MemoryMeter_class,
&SwapMeter_class,
&MemorySwapMeter_class,
&TasksMeter_class,
&UptimeMeter_class,
&BatteryMeter_class,
&HostnameMeter_class,
&SysArchMeter_class,
&AllCPUsMeter_class,
&AllCPUs2Meter_class,
&AllCPUs4Meter_class,
&AllCPUs8Meter_class,
&LeftCPUsMeter_class,
&RightCPUsMeter_class,
&LeftCPUs2Meter_class,
&RightCPUs2Meter_class,
&LeftCPUs4Meter_class,
&RightCPUs4Meter_class,
&LeftCPUs8Meter_class,
&RightCPUs8Meter_class,
&FileDescriptorMeter_class,
&BlankMeter_class,
NULL
};
bool Platform_init(void) {
/* no platform-specific setup needed */
return true;
}
void Platform_done(void) {
/* no platform-specific cleanup needed */
}
void Platform_setBindings(Htop_Action* keys) {
/* no platform-specific key bindings */
(void) keys;
}
int Platform_getUptime(void) {
struct timeval bootTime, currTime;
const int mib[2] = { CTL_KERN, KERN_BOOTTIME };
size_t size = sizeof(bootTime);
int err = sysctl(mib, 2, &bootTime, &size, NULL, 0);
if (err) {
return -1;
}
gettimeofday(&currTime, NULL);
return (int) difftime(currTime.tv_sec, bootTime.tv_sec);
}
void Platform_getLoadAverage(double* one, double* five, double* fifteen) {
struct loadavg loadAverage;
const int mib[2] = { CTL_VM, VM_LOADAVG };
size_t size = sizeof(loadAverage);
int err = sysctl(mib, 2, &loadAverage, &size, NULL, 0);
if (err) {
*one = 0;
*five = 0;
*fifteen = 0;
return;
}
*one = (double) loadAverage.ldavg[0] / loadAverage.fscale;
*five = (double) loadAverage.ldavg[1] / loadAverage.fscale;
*fifteen = (double) loadAverage.ldavg[2] / loadAverage.fscale;
}
pid_t Platform_getMaxPid(void) {
return 2 * THREAD_PID_OFFSET;
}
double Platform_setCPUValues(Meter* this, unsigned int cpu) {
const Machine* host = this->host;
const OpenBSDMachine* ohost = (const OpenBSDMachine*) host;
const CPUData* cpuData = &ohost->cpuData[cpu];
double total;
double totalPercent;
double* v = this->values;
if (!cpuData->online) {
this->curItems = 0;
return NAN;
}
total = cpuData->totalPeriod == 0 ? 1 : cpuData->totalPeriod;
v[CPU_METER_NICE] = cpuData->nicePeriod / total * 100.0;
v[CPU_METER_NORMAL] = cpuData->userPeriod / total * 100.0;
if (host->settings->detailedCPUTime) {
v[CPU_METER_KERNEL] = cpuData->sysPeriod / total * 100.0;
v[CPU_METER_IRQ] = cpuData->intrPeriod / total * 100.0;
v[CPU_METER_SOFTIRQ] = 0.0;
v[CPU_METER_STEAL] = 0.0;
v[CPU_METER_GUEST] = 0.0;
v[CPU_METER_IOWAIT] = 0.0;
v[CPU_METER_FREQUENCY] = NAN;
this->curItems = 8;
} else {
v[CPU_METER_KERNEL] = cpuData->sysAllPeriod / total * 100.0;
v[CPU_METER_IRQ] = 0.0; // No steal nor guest on OpenBSD
this->curItems = 4;
}
totalPercent = v[CPU_METER_NICE] + v[CPU_METER_NORMAL] + v[CPU_METER_KERNEL] + v[CPU_METER_IRQ];
totalPercent = CLAMP(totalPercent, 0.0, 100.0);
v[CPU_METER_TEMPERATURE] = NAN;
v[CPU_METER_FREQUENCY] = (ohost->cpuSpeed != -1) ? ohost->cpuSpeed : NAN;
return totalPercent;
}
void Platform_setMemoryValues(Meter* this) {
const Machine* host = this->host;
long int usedMem = host->usedMem;
long int buffersMem = host->buffersMem;
long int cachedMem = host->cachedMem;
usedMem -= buffersMem + cachedMem;
this->total = host->totalMem;
this->values[MEMORY_METER_USED] = usedMem;
// this->values[MEMORY_METER_SHARED] = "shared memory, like tmpfs and shm"
// this->values[MEMORY_METER_COMPRESSED] = "compressed memory, like zswap on linux"
this->values[MEMORY_METER_BUFFERS] = buffersMem;
this->values[MEMORY_METER_CACHE] = cachedMem;
// this->values[MEMORY_METER_AVAILABLE] = "available memory"
}
void Platform_setSwapValues(Meter* this) {
const Machine* host = this->host;
this->total = host->totalSwap;
this->values[SWAP_METER_USED] = host->usedSwap;
// this->values[SWAP_METER_CACHE] = "pages that are both in swap and RAM, like SwapCached on linux"
// this->values[SWAP_METER_FRONTSWAP] = "pages that are accounted to swap but stored elsewhere, like frontswap on linux"
}
char* Platform_getProcessEnv(pid_t pid) {
char errbuf[_POSIX2_LINE_MAX];
char* env;
char** ptr;
int count;
kvm_t* kt;
struct kinfo_proc* kproc;
size_t capacity = 4096, size = 0;
if ((kt = kvm_openfiles(NULL, NULL, NULL, KVM_NO_FILES, errbuf)) == NULL) {
return NULL;
}
if ((kproc = kvm_getprocs(kt, KERN_PROC_PID, pid,
sizeof(struct kinfo_proc), &count)) == NULL) {
(void) kvm_close(kt);
return NULL;
}
if ((ptr = kvm_getenvv(kt, kproc, 0)) == NULL) {
(void) kvm_close(kt);
return NULL;
}
env = xMalloc(capacity);
for (char** p = ptr; *p; p++) {
size_t len = strlen(*p) + 1;
while (size + len > capacity) {
if (capacity > (SIZE_MAX / 2)) {
free(env);
env = NULL;
goto end;
}
capacity *= 2;
env = xRealloc(env, capacity);
}
strlcpy(env + size, *p, len);
size += len;
}
if (size < 2 || env[size - 1] || env[size - 2]) {
if (size + 2 < capacity)
env = xRealloc(env, capacity + 2);
env[size] = 0;
env[size + 1] = 0;
}
end:
(void) kvm_close(kt);
return env;
}
FileLocks_ProcessData* Platform_getProcessLocks(pid_t pid) {
(void)pid;
return NULL;
}
void Platform_getFileDescriptors(double* used, double* max) {
static const int mib_kern_maxfile[] = { CTL_KERN, KERN_MAXFILES };
int sysctl_maxfile = 0;
size_t size_maxfile = sizeof(int);
if (sysctl(mib_kern_maxfile, ARRAYSIZE(mib_kern_maxfile), &sysctl_maxfile, &size_maxfile, NULL, 0) < 0) {
*max = NAN;
} else if (size_maxfile != sizeof(int) || sysctl_maxfile < 1) {
*max = NAN;
} else {
*max = sysctl_maxfile;
}
static const int mib_kern_nfiles[] = { CTL_KERN, KERN_NFILES };
int sysctl_nfiles = 0;
size_t size_nfiles = sizeof(int);
if (sysctl(mib_kern_nfiles, ARRAYSIZE(mib_kern_nfiles), &sysctl_nfiles, &size_nfiles, NULL, 0) < 0) {
*used = NAN;
} else if (size_nfiles != sizeof(int) || sysctl_nfiles < 0) {
*used = NAN;
} else {
*used = sysctl_nfiles;
}
}
bool Platform_getDiskIO(DiskIOData* data) {
// TODO
(void)data;
return false;
}
bool Platform_getNetworkIO(NetworkIOData* data) {
// TODO
(void)data;
return false;
}
static bool findDevice(const char* name, int* mib, struct sensordev* snsrdev, size_t* sdlen) {
for (int devn = 0;; devn++) {
mib[2] = devn;
if (sysctl(mib, 3, snsrdev, sdlen, NULL, 0) == -1) {
if (errno == ENXIO)
continue;
if (errno == ENOENT)
return false;
}
if (String_eq(name, snsrdev->xname)) {
return true;
}
}
}
void Platform_getBattery(double* percent, ACPresence* isOnAC) {
int mib[] = {CTL_HW, HW_SENSORS, 0, 0, 0};
struct sensor s;
size_t slen = sizeof(struct sensor);
struct sensordev snsrdev;
size_t sdlen = sizeof(struct sensordev);
bool found = findDevice("acpibat0", mib, &snsrdev, &sdlen);
*percent = NAN;
if (found) {
/* last full capacity */
mib[3] = 7;
mib[4] = 0;
double last_full_capacity = 0;
if (sysctl(mib, 5, &s, &slen, NULL, 0) != -1)
last_full_capacity = s.value;
if (last_full_capacity > 0) {
/* remaining capacity */
mib[3] = 7;
mib[4] = 3;
if (sysctl(mib, 5, &s, &slen, NULL, 0) != -1) {
double charge = s.value;
*percent = 100 * (charge / last_full_capacity);
if (charge >= last_full_capacity) {
*percent = 100;
}
}
}
}
found = findDevice("acpiac0", mib, &snsrdev, &sdlen);
*isOnAC = AC_ERROR;
if (found) {
mib[3] = 9;
mib[4] = 0;
if (sysctl(mib, 5, &s, &slen, NULL, 0) != -1)
*isOnAC = s.value;
}
}