owntone-server/src/misc.c

1788 lines
36 KiB
C

/*
* Copyright (C) 2009-2010 Julien BLACHE <jb@jblache.org>
*
* Some code included below is in the public domain, check comments
* in the file.
*
* Pieces of code adapted from mt-daapd:
* Copyright (C) 2003-2007 Ron Pedde (ron@pedde.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <inttypes.h>
#include <limits.h>
#include <sys/param.h>
#include <sys/types.h>
#ifndef CLOCK_REALTIME
#include <sys/time.h>
#endif
#ifdef HAVE_UUID
#include <uuid/uuid.h>
#endif
#ifdef HAVE_PTHREAD_NP_H
# include <pthread_np.h>
#endif
#include <netdb.h>
#include <arpa/inet.h>
#include <ifaddrs.h> // getifaddrs
#include <event2/http.h> // evhttp_bind
#include <unistr.h>
#include <uniconv.h>
#include <libavutil/base64.h>
#include "logger.h"
#include "conffile.h"
#include "misc.h"
static char *buildopts[] =
{
#ifdef HAVE_FFMPEG
"ffmpeg",
#else
"libav",
#endif
#ifdef SPOTIFY
"Spotify",
#else
"Without Spotify",
#endif
#ifdef SPOTIFY_LIBRESPOTC
"librespot-c",
#endif
#ifdef LASTFM
"LastFM",
#else
"Without LastFM",
#endif
#ifdef CHROMECAST
"Chromecast",
#else
"Without Chromecast",
#endif
#ifdef MPD
"MPD",
#else
"Without MPD",
#endif
#ifdef HAVE_LIBWEBSOCKETS
"Websockets",
#else
"Without websockets",
#endif
#ifdef HAVE_ALSA
"ALSA",
#else
"Without ALSA",
#endif
#ifdef HAVE_LIBPULSE
"Pulseaudio",
#endif
#ifdef WEBINTERFACE
"Webinterface",
#else
"Without webinterface",
#endif
#ifdef HAVE_REGEX_H
"Regex",
#else
"Without regex",
#endif
NULL
};
/* ------------------------ Network utility functions ----------------------- */
bool
net_peer_address_is_trusted(const char *addr)
{
cfg_t *section;
const char *network;
int i;
int n;
if (!addr)
return false;
if (strncmp(addr, "::ffff:", strlen("::ffff:")) == 0)
addr += strlen("::ffff:");
section = cfg_getsec(cfg, "general");
n = cfg_size(section, "trusted_networks");
for (i = 0; i < n; i++)
{
network = cfg_getnstr(section, "trusted_networks", i);
if (!network || network[0] == '\0')
return false;
if (strncmp(network, addr, strlen(network)) == 0)
return true;
if ((strcmp(network, "localhost") == 0) && (strcmp(addr, "127.0.0.1") == 0 || strcmp(addr, "::1") == 0))
return true;
if (strcmp(network, "any") == 0)
return true;
}
return false;
}
int
net_address_get(char *addr, size_t addr_len, union net_sockaddr *naddr)
{
const char *s = NULL;
memset(addr, 0, addr_len); // Just in case caller doesn't check for errors
if (naddr->sa.sa_family == AF_INET6)
s = inet_ntop(AF_INET6, &naddr->sin6.sin6_addr, addr, addr_len);
else if (naddr->sa.sa_family == AF_INET)
s = inet_ntop(AF_INET, &naddr->sin.sin_addr, addr, addr_len);
if (!s)
return -1;
return 0;
}
int
net_port_get(short unsigned *port, union net_sockaddr *naddr)
{
if (naddr->sa.sa_family == AF_INET6)
*port = ntohs(naddr->sin6.sin6_port);
else if (naddr->sa.sa_family == AF_INET)
*port = ntohs(naddr->sin.sin_port);
else
return -1;
return 0;
}
int
net_if_get(char *ifname, size_t ifname_len, const char *addr)
{
struct ifaddrs *ifaddrs;
struct ifaddrs *iap;
char s[64];
memset(ifname, 0, ifname_len);
getifaddrs(&ifaddrs);
for (iap = ifaddrs; iap; iap = iap->ifa_next)
{
if (!iap->ifa_addr)
continue;
if (net_address_get(s, sizeof(s), (union net_sockaddr *)iap->ifa_addr) < 0)
continue;
if (strcmp(s, addr) != 0)
continue;
snprintf(ifname, ifname_len, "%s", iap->ifa_name);
break;
}
freeifaddrs(ifaddrs);
return (ifname[0] != 0) ? 0 : -1;
}
int
net_connect(const char *addr, unsigned short port, int type, const char *log_service_name)
{
struct addrinfo hints = { 0 };
struct addrinfo *servinfo;
struct addrinfo *ptr;
char strport[8];
int fd;
int ret;
DPRINTF(E_DBG, L_MISC, "Connecting to '%s' at %s (port %u)\n", log_service_name, addr, port);
hints.ai_socktype = (type & (SOCK_STREAM | SOCK_DGRAM)); // filter since type can be SOCK_STREAM | SOCK_NONBLOCK
hints.ai_family = (cfg_getbool(cfg_getsec(cfg, "general"), "ipv6")) ? AF_UNSPEC : AF_INET;
snprintf(strport, sizeof(strport), "%hu", port);
ret = getaddrinfo(addr, strport, &hints, &servinfo);
if (ret < 0)
{
DPRINTF(E_LOG, L_MISC, "Could not connect to '%s' at %s (port %u): %s\n", log_service_name, addr, port, gai_strerror(ret));
return -1;
}
for (ptr = servinfo; ptr; ptr = ptr->ai_next)
{
fd = socket(ptr->ai_family, type | SOCK_CLOEXEC, ptr->ai_protocol);
if (fd < 0)
{
continue;
}
ret = connect(fd, ptr->ai_addr, ptr->ai_addrlen);
if (ret < 0 && errno != EINPROGRESS) // EINPROGRESS in case of SOCK_NONBLOCK
{
close(fd);
continue;
}
break;
}
freeaddrinfo(servinfo);
if (!ptr)
{
DPRINTF(E_LOG, L_MISC, "Could not connect to '%s' at %s (port %u): %s\n", log_service_name, addr, port, strerror(errno));
return -1;
}
// net_address_get(ipaddr, sizeof(ipaddr), (union net_sockaddr *)ptr->ai-addr);
return fd;
}
// If *port is 0 then a random port will be assigned, and *port will be updated
// with the port number
static int
net_bind_impl(short unsigned *port, int type, const char *log_service_name, bool reuseport)
{
struct addrinfo hints = { 0 };
struct addrinfo *servinfo;
struct addrinfo *ptr;
union net_sockaddr naddr = { 0 };
socklen_t naddr_len = sizeof(naddr);
const char *cfgaddr;
char addr[INET6_ADDRSTRLEN];
char strport[8];
int yes = 1;
int no = 0;
int fd = -1;
int ret;
cfgaddr = cfg_getstr(cfg_getsec(cfg, "general"), "bind_address");
hints.ai_socktype = (type & (SOCK_STREAM | SOCK_DGRAM)); // filter since type can be SOCK_STREAM | SOCK_NONBLOCK
hints.ai_family = (cfg_getbool(cfg_getsec(cfg, "general"), "ipv6")) ? AF_INET6 : AF_INET;
hints.ai_flags = cfgaddr ? 0 : AI_PASSIVE;
snprintf(strport, sizeof(strport), "%hu", *port);
ret = getaddrinfo(cfgaddr, strport, &hints, &servinfo);
if (ret < 0)
{
DPRINTF(E_LOG, L_MISC, "Failure creating '%s' service, could not resolve '%s' (port %s): %s\n", log_service_name, cfgaddr ? cfgaddr : "(ANY)", strport, gai_strerror(ret));
return -1;
}
for (ptr = servinfo; ptr != NULL; ptr = ptr->ai_next)
{
if (fd >= 0)
close(fd);
fd = socket(ptr->ai_family, type | SOCK_CLOEXEC, ptr->ai_protocol);
if (fd < 0)
continue;
// Makes us able to attach multiple threads to the same port
if (reuseport)
ret = setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &yes, sizeof(yes));
else
ret = setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &no, sizeof(no));
if (ret < 0)
continue;
// TODO libevent sets this, we do the same?
ret = setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &yes, sizeof(yes));
if (ret < 0)
continue;
ret = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
if (ret < 0)
continue;
if (ptr->ai_family == AF_INET6)
{
// We want to be sure the service is dual stack
ret = setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &no, sizeof(no));
if (ret < 0)
continue;
}
ret = bind(fd, ptr->ai_addr, ptr->ai_addrlen);
if (ret < 0)
continue;
break;
}
freeaddrinfo(servinfo);
if (!ptr)
{
DPRINTF(E_LOG, L_MISC, "Could not create service '%s' with address %s, port %hu: %s\n", log_service_name, cfgaddr ? cfgaddr : "(ANY)", *port, strerror(errno));
goto error;
}
// Get our address (as string) and the port that was assigned (necessary when
// caller didn't specify a port)
ret = getsockname(fd, &naddr.sa, &naddr_len);
if (ret < 0)
{
DPRINTF(E_LOG, L_MISC, "Error finding address of service '%s': %s\n", log_service_name, strerror(errno));
goto error;
}
else if (naddr_len > sizeof(naddr))
{
DPRINTF(E_LOG, L_MISC, "Unexpected address length of service '%s'\n", log_service_name);
goto error;
}
net_port_get(port, &naddr);
net_address_get(addr, sizeof(addr), &naddr);
DPRINTF(E_DBG, L_MISC, "Service '%s' bound to %s, port %hu, socket %d\n", log_service_name, addr, *port, fd);
return fd;
error:
if (fd >= 0)
close(fd);
return -1;
}
int
net_bind(short unsigned *port, int type, const char *log_service_name)
{
return net_bind_impl(port, type, log_service_name, false);
}
int
net_bind_with_reuseport(short unsigned *port, int type, const char *log_service_name)
{
return net_bind_impl(port, type, log_service_name, true);
}
int
net_evhttp_bind(struct evhttp *evhttp, unsigned short port, const char *log_service_name)
{
const char *bind_address;
bool v6_enabled;
int ret;
bind_address = cfg_getstr(cfg_getsec(cfg, "general"), "bind_address");
// Normally comply with config, except for "::" where we want to listen on
// both ipv4 and ipv6 (as the comment in the config file says)
if (bind_address && strcmp(bind_address, "::") != 0)
return evhttp_bind_socket(evhttp, bind_address, port);
// For Linux, we could just do evhttp_bind_socket() for "::", and both the
// ipv4 and v6 port would be bound. However, for bsd it seems it is necessary
// to do like below.
v6_enabled = cfg_getbool(cfg_getsec(cfg, "general"), "ipv6");
if (v6_enabled)
{
ret = evhttp_bind_socket(evhttp, "::", port);
if (ret < 0)
{
DPRINTF(E_LOG, L_MISC, "Could not bind service '%s' to port %d with IPv6, falling back to IPv4\n", log_service_name, port);
v6_enabled = 0;
}
}
ret = evhttp_bind_socket(evhttp, "0.0.0.0", port);
if (ret < 0)
{
if (!v6_enabled)
return -1;
#ifndef __linux__
DPRINTF(E_LOG, L_MISC, "Could not bind service '%s' to port %d with IPv4, listening on IPv6 only\n", log_service_name, port);
#endif
}
return 0;
}
bool
net_is_http_or_https(const char *url)
{
return (strncasecmp(url, "http://", strlen("http://")) == 0 || strncasecmp(url, "https://", strlen("https://")) == 0);
}
/* ----------------------- Conversion/hashing/sanitizers -------------------- */
int
safe_atoi32(const char *str, int32_t *val)
{
char *end;
long intval;
if (str == NULL)
{
DPRINTF(E_SPAM, L_MISC, "Input to safe_atoi32 is NULL\n");
return -1;
}
errno = 0;
intval = strtol(str, &end, 10);
if (((errno == ERANGE) && ((intval == LONG_MAX) || (intval == LONG_MIN)))
|| ((errno != 0) && (intval == 0)))
{
DPRINTF(E_DBG, L_MISC, "Invalid integer in string (%s): %s\n", str, strerror(errno));
return -1;
}
if (end == str)
{
DPRINTF(E_DBG, L_MISC, "No integer found in string (%s)\n", str);
return -1;
}
if (intval > INT32_MAX)
{
DPRINTF(E_DBG, L_MISC, "Integer value too large (%s)\n", str);
return -1;
}
*val = (int32_t)intval;
return 0;
}
int
safe_atou32(const char *str, uint32_t *val)
{
char *end;
unsigned long intval;
if (str == NULL)
{
DPRINTF(E_SPAM, L_MISC, "Input to safe_atou32 is NULL\n");
return -1;
}
errno = 0;
intval = strtoul(str, &end, 10);
if (((errno == ERANGE) && (intval == ULONG_MAX))
|| ((errno != 0) && (intval == 0)))
{
DPRINTF(E_DBG, L_MISC, "Invalid integer in string (%s): %s\n", str, strerror(errno));
return -1;
}
if (end == str)
{
DPRINTF(E_DBG, L_MISC, "No integer found in string (%s)\n", str);
return -1;
}
if (intval > UINT32_MAX)
{
DPRINTF(E_DBG, L_MISC, "Integer value too large (%s)\n", str);
return -1;
}
*val = (uint32_t)intval;
return 0;
}
int
safe_hextou32(const char *str, uint32_t *val)
{
char *end;
unsigned long intval;
if (str == NULL)
{
DPRINTF(E_SPAM, L_MISC, "Input to safe_hextou32 is NULL\n");
return -1;
}
errno = 0;
intval = strtoul(str, &end, 16);
if (((errno == ERANGE) && (intval == ULONG_MAX))
|| ((errno != 0) && (intval == 0)))
{
DPRINTF(E_DBG, L_MISC, "Invalid integer in string (%s): %s\n", str, strerror(errno));
return -1;
}
if (end == str)
{
DPRINTF(E_DBG, L_MISC, "No integer found in string (%s)\n", str);
return -1;
}
if (intval > UINT32_MAX)
{
DPRINTF(E_DBG, L_MISC, "Integer value too large (%s)\n", str);
return -1;
}
*val = (uint32_t)intval;
return 0;
}
int
safe_atoi64(const char *str, int64_t *val)
{
char *end;
long long intval;
if (str == NULL)
{
DPRINTF(E_SPAM, L_MISC, "Input to safe_atoi64 is NULL\n");
return -1;
}
errno = 0;
intval = strtoll(str, &end, 10);
if (((errno == ERANGE) && ((intval == LLONG_MAX) || (intval == LLONG_MIN)))
|| ((errno != 0) && (intval == 0)))
{
DPRINTF(E_DBG, L_MISC, "Invalid integer in string (%s): %s\n", str, strerror(errno));
return -1;
}
if (end == str)
{
DPRINTF(E_DBG, L_MISC, "No integer found in string (%s)\n", str);
return -1;
}
if (intval > INT64_MAX)
{
DPRINTF(E_DBG, L_MISC, "Integer value too large (%s)\n", str);
return -1;
}
*val = (int64_t)intval;
return 0;
}
int
safe_atou64(const char *str, uint64_t *val)
{
char *end;
unsigned long long intval;
if (str == NULL)
{
DPRINTF(E_SPAM, L_MISC, "Input to safe_atou64 is NULL\n");
return -1;
}
errno = 0;
intval = strtoull(str, &end, 10);
if (((errno == ERANGE) && (intval == ULLONG_MAX))
|| ((errno != 0) && (intval == 0)))
{
DPRINTF(E_DBG, L_MISC, "Invalid integer in string (%s): %s\n", str, strerror(errno));
return -1;
}
if (end == str)
{
DPRINTF(E_DBG, L_MISC, "No integer found in string (%s)\n", str);
return -1;
}
if (intval > UINT64_MAX)
{
DPRINTF(E_DBG, L_MISC, "Integer value too large (%s)\n", str);
return -1;
}
*val = (uint64_t)intval;
return 0;
}
int
safe_hextou64(const char *str, uint64_t *val)
{
char *end;
unsigned long long intval;
if (str == NULL)
{
DPRINTF(E_SPAM, L_MISC, "Input to safe_hextou64 is NULL\n");
return -1;
}
errno = 0;
intval = strtoull(str, &end, 16);
if (((errno == ERANGE) && (intval == ULLONG_MAX))
|| ((errno != 0) && (intval == 0)))
{
DPRINTF(E_DBG, L_MISC, "Invalid integer in string (%s): %s\n", str, strerror(errno));
return -1;
}
if (end == str)
{
DPRINTF(E_DBG, L_MISC, "No integer found in string (%s)\n", str);
return -1;
}
if (intval > UINT64_MAX)
{
DPRINTF(E_DBG, L_MISC, "Integer value too large (%s)\n", str);
return -1;
}
*val = (uint64_t)intval;
return 0;
}
char *
safe_strdup(const char *str)
{
if (str == NULL)
return NULL;
return strdup(str);
}
/*
* Wrapper function for vasprintf by Intel Corporation
* Published under the L-GPL 2.1 licence as part of clr-boot-manager
*
* https://github.com/clearlinux/clr-boot-manager
*/
char *
safe_asprintf(const char *fmt, ...)
{
char *ret = NULL;
va_list va;
va_start(va, fmt);
if (vasprintf(&ret, fmt, va) < 0)
{
DPRINTF(E_FATAL, L_MISC, "Out of memory for safe_asprintf\n");
abort();
}
va_end(va);
return ret;
}
int
safe_snprintf_cat(char *dst, size_t n, const char *fmt, ...)
{
size_t dstlen;
va_list va;
int ret;
if (!dst || !fmt)
return -1;
dstlen = strlen(dst);
if (n < dstlen)
return -1;
va_start(va, fmt);
ret = vsnprintf(dst + dstlen, n - dstlen, fmt, va);
va_end(va);
if (ret >= 0 && ret < n - dstlen)
return 0;
else
return -1;
}
int
safe_snreplace(char *s, size_t sz, const char *pattern, const char *replacement)
{
char *ptr;
char *src;
char *dst;
size_t num;
if (!s)
return -1;
if (!pattern || !replacement)
return 0;
size_t p_len = strlen(pattern);
size_t r_len = strlen(replacement);
size_t s_len = strlen(s) + 1; // Incl terminator
ptr = s;
while ((ptr = strstr(ptr, pattern)))
{
// We will move the part of the string after the pattern from src to dst
src = ptr + p_len;
dst = ptr + r_len;
num = s_len - (src - s); // Number of bytes w/terminator we need to move
if (dst + num > s + sz)
return -1; // Not enough room
// Move everything after the pattern, use memmove since there might be an overlap
memmove(dst, src, num);
// Write replacement, no null terminater
memcpy(ptr, replacement, r_len);
// String now has a new length
s_len += r_len - p_len;
// Advance ptr to avoid infinite looping
ptr = dst;
}
return 0;
}
char *
unicode_fixup_string(char *str, const char *fromcode)
{
uint8_t *ret;
size_t len;
if (!str)
return NULL;
len = strlen(str);
/* String is valid UTF-8 */
if (!u8_check((uint8_t *)str, len))
{
if (len >= 3)
{
/* Check for and strip byte-order mark */
if (memcmp("\xef\xbb\xbf", str, 3) == 0)
memmove(str, str + 3, len - 3 + 1);
}
return str;
}
ret = u8_strconv_from_encoding(str, fromcode, iconveh_question_mark);
if (!ret)
{
DPRINTF(E_LOG, L_MISC, "Could not convert string '%s' to UTF-8: %s\n", str, strerror(errno));
return NULL;
}
return (char *)ret;
}
char *
trim(char *str)
{
size_t start; // Position of first non-space char
size_t term; // Position of 0-terminator
if (!str)
return NULL;
start = 0;
term = strlen(str);
while ((start < term) && isspace(str[start]))
start++;
while ((term > start) && isspace(str[term - 1]))
term--;
str[term] = '\0';
// Shift chars incl. terminator
if (start)
memmove(str, str + start, term - start + 1);
return str;
}
char *
atrim(const char *str)
{
size_t start; // Position of first non-space char
size_t term; // Position of 0-terminator
size_t size;
char *result;
if (!str)
return NULL;
start = 0;
term = strlen(str);
while ((start < term) && isspace(str[start]))
start++;
while ((term > start) && isspace(str[term - 1]))
term--;
size = term - start + 1;
result = malloc(size);
memcpy(result, str + start, size);
result[size - 1] = '\0';
return result;
}
void
swap_pointers(char **a, char **b)
{
char *t = *a;
*a = *b;
*b = t;
}
uint32_t
djb_hash(const void *data, size_t len)
{
const unsigned char *bytes = data;
uint32_t hash = 5381;
while (len--)
{
hash = ((hash << 5) + hash) + *bytes;
bytes++;
}
return hash;
}
int64_t
two_str_hash(const char *a, const char *b)
{
char hashbuf[2048];
int64_t hash;
int i;
int ret;
ret = snprintf(hashbuf, sizeof(hashbuf), "%s==%s", (a) ? a : "", (b) ? b : "");
if (ret < 0 || ret == sizeof(hashbuf))
{
DPRINTF(E_LOG, L_MISC, "Buffer too large to calculate hash: '%s==%s'\n", a, b);
return 999999; // Stand-in hash...
}
for (i = 0; hashbuf[i]; i++)
hashbuf[i] = tolower(hashbuf[i]);
// Limit hash length to 63 bits, due to signed type in sqlite
hash = murmur_hash64(hashbuf, strlen(hashbuf), 0) >> 1;
return hash;
}
uint8_t *
b64_decode(int *dstlen, const char *src)
{
uint8_t *out;
int len;
int ret;
len = AV_BASE64_DECODE_SIZE(strlen(src));
// Add a extra zero byte just in case we are decoding a string without null
// termination
CHECK_NULL(L_MISC, out = calloc(1, len + 1));
ret = av_base64_decode(out, src, len);
if (ret < 0)
{
free(out);
return NULL;
}
if (dstlen)
*dstlen = ret;
return out;
}
char *
b64_encode(const uint8_t *src, int srclen)
{
char *out;
int len;
char *ret;
len = AV_BASE64_SIZE(srclen);
CHECK_NULL(L_MISC, out = calloc(1, len));
ret = av_base64_encode(out, len, src, srclen);
if (!ret)
{
free(out);
return NULL;
}
return out;
}
/*
* MurmurHash2, 64-bit versions, by Austin Appleby
*
* Code released under the public domain, as per
* <http://murmurhash.googlepages.com/>
* as of 2010-01-03.
*/
#if SIZEOF_VOID_P == 8 /* 64bit platforms */
uint64_t
murmur_hash64(const void *key, int len, uint32_t seed)
{
const int r = 47;
const uint64_t m = 0xc6a4a7935bd1e995;
const uint64_t *data;
const uint64_t *end;
const unsigned char *data_tail;
uint64_t h;
uint64_t k;
h = seed ^ (len * m);
data = (const uint64_t *)key;
end = data + (len / 8);
while (data != end)
{
k = *data++;
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
}
data_tail = (const unsigned char *)data;
switch (len & 7)
{
case 7:
h ^= (uint64_t)(data_tail[6]) << 48; /* FALLTHROUGH */
case 6:
h ^= (uint64_t)(data_tail[5]) << 40; /* FALLTHROUGH */
case 5:
h ^= (uint64_t)(data_tail[4]) << 32; /* FALLTHROUGH */
case 4:
h ^= (uint64_t)(data_tail[3]) << 24; /* FALLTHROUGH */
case 3:
h ^= (uint64_t)(data_tail[2]) << 16; /* FALLTHROUGH */
case 2:
h ^= (uint64_t)(data_tail[1]) << 8; /* FALLTHROUGH */
case 1:
h ^= (uint64_t)(data_tail[0]);
h *= m;
}
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
#elif SIZEOF_VOID_P == 4 /* 32bit platforms */
uint64_t
murmur_hash64(const void *key, int len, uint32_t seed)
{
const int r = 24;
const uint32_t m = 0x5bd1e995;
const uint32_t *data;
const unsigned char *data_tail;
uint32_t k1;
uint32_t h1;
uint32_t k2;
uint32_t h2;
uint64_t h;
h1 = seed ^ len;
h2 = 0;
data = (const uint32_t *)key;
while (len >= 8)
{
k1 = *data++;
k1 *= m; k1 ^= k1 >> r; k1 *= m;
h1 *= m; h1 ^= k1;
k2 = *data++;
k2 *= m; k2 ^= k2 >> r; k2 *= m;
h2 *= m; h2 ^= k2;
len -= 8;
}
if (len >= 4)
{
k1 = *data++;
k1 *= m; k1 ^= k1 >> r; k1 *= m;
h1 *= m; h1 ^= k1;
len -= 4;
}
data_tail = (const unsigned char *)data;
switch(len)
{
case 3:
h2 ^= (uint32_t)(data_tail[2]) << 16;
case 2:
h2 ^= (uint32_t)(data_tail[1]) << 8;
case 1:
h2 ^= (uint32_t)(data_tail[0]);
h2 *= m;
};
h1 ^= h2 >> 18; h1 *= m;
h2 ^= h1 >> 22; h2 *= m;
h1 ^= h2 >> 17; h1 *= m;
h2 ^= h1 >> 19; h2 *= m;
h = h1;
h = (h << 32) | h2;
return h;
}
#else
# error Platform not supported
#endif
/* --------------------------- Key/value functions -------------------------- */
struct keyval *
keyval_alloc(void)
{
struct keyval *kv;
kv = calloc(1, sizeof(struct keyval));
if (!kv)
{
DPRINTF(E_LOG, L_MISC, "Out of memory for keyval alloc\n");
return NULL;
}
return kv;
}
int
keyval_add_size(struct keyval *kv, const char *name, const char *value, size_t size)
{
struct onekeyval *okv;
const char *val;
if (!kv)
return -1;
/* Check for duplicate key names */
val = keyval_get(kv, name);
if (val)
{
/* Same value, fine */
if (strcmp(val, value) == 0)
return 0;
else /* Different value, bad */
return -1;
}
okv = (struct onekeyval *)malloc(sizeof(struct onekeyval));
if (!okv)
{
DPRINTF(E_LOG, L_MISC, "Out of memory for new keyval\n");
return -1;
}
okv->name = strdup(name);
if (!okv->name)
{
DPRINTF(E_LOG, L_MISC, "Out of memory for new keyval name\n");
free(okv);
return -1;
}
okv->value = (char *)malloc(size + 1);
if (!okv->value)
{
DPRINTF(E_LOG, L_MISC, "Out of memory for new keyval value\n");
free(okv->name);
free(okv);
return -1;
}
memcpy(okv->value, value, size);
okv->value[size] = '\0';
okv->next = NULL;
if (!kv->head)
kv->head = okv;
if (kv->tail)
kv->tail->next = okv;
kv->tail = okv;
return 0;
}
int
keyval_add(struct keyval *kv, const char *name, const char *value)
{
return keyval_add_size(kv, name, value, strlen(value));
}
void
keyval_remove(struct keyval *kv, const char *name)
{
struct onekeyval *okv;
struct onekeyval *pokv;
if (!kv)
return;
for (pokv = NULL, okv = kv->head; okv; pokv = okv, okv = okv->next)
{
if (strcasecmp(okv->name, name) == 0)
break;
}
if (!okv)
return;
if (okv == kv->head)
kv->head = okv->next;
if (okv == kv->tail)
kv->tail = pokv;
if (pokv)
pokv->next = okv->next;
free(okv->name);
free(okv->value);
free(okv);
}
const char *
keyval_get(struct keyval *kv, const char *name)
{
struct onekeyval *okv;
if (!kv)
return NULL;
for (okv = kv->head; okv; okv = okv->next)
{
if (strcasecmp(okv->name, name) == 0)
return okv->value;
}
return NULL;
}
void
keyval_clear(struct keyval *kv)
{
struct onekeyval *hokv;
struct onekeyval *okv;
if (!kv)
return;
hokv = kv->head;
for (okv = hokv; hokv; okv = hokv)
{
hokv = okv->next;
free(okv->name);
free(okv->value);
free(okv);
}
kv->head = NULL;
kv->tail = NULL;
}
void
keyval_sort(struct keyval *kv)
{
struct onekeyval *head;
struct onekeyval *okv;
struct onekeyval *sokv;
if (!kv || !kv->head)
return;
head = kv->head;
for (okv = kv->head; okv; okv = okv->next)
{
okv->sort = NULL;
for (sokv = kv->head; sokv; sokv = sokv->next)
{
// We try to find a name which is greater than okv->name
// but less than our current candidate (okv->sort->name)
if ( (strcmp(sokv->name, okv->name) > 0) &&
((okv->sort == NULL) || (strcmp(sokv->name, okv->sort->name) < 0)) )
okv->sort = sokv;
}
// Find smallest name, which will be the new head
if (strcmp(okv->name, head->name) < 0)
head = okv;
}
while ((okv = kv->head))
{
kv->head = okv->next;
okv->next = okv->sort;
}
kv->head = head;
for (okv = kv->head; okv; okv = okv->next)
kv->tail = okv;
DPRINTF(E_DBG, L_MISC, "Keyval sorted. New head: %s. New tail: %s.\n", kv->head->name, kv->tail->name);
}
/* ------------------------------- Ringbuffer ------------------------------- */
int
ringbuffer_init(struct ringbuffer *buf, size_t size)
{
memset(buf, 0, sizeof(struct ringbuffer));
CHECK_NULL(L_MISC, buf->buffer = malloc(size));
buf->size = size;
buf->write_avail = size;
return 0;
}
void
ringbuffer_free(struct ringbuffer *buf, bool content_only)
{
if (!buf)
return;
free(buf->buffer);
if (content_only)
memset(buf, 0, sizeof(struct ringbuffer));
else
free(buf);
}
size_t
ringbuffer_write(struct ringbuffer *buf, const void* src, size_t srclen)
{
int remaining;
if (buf->write_avail == 0 || srclen == 0)
return 0;
if (srclen > buf->write_avail)
srclen = buf->write_avail;
remaining = buf->size - buf->write_pos;
if (srclen > remaining)
{
memcpy(buf->buffer + buf->write_pos, src, remaining);
memcpy(buf->buffer, src + remaining, srclen - remaining);
}
else
{
memcpy(buf->buffer + buf->write_pos, src, srclen);
}
buf->write_pos = (buf->write_pos + srclen) % buf->size;
buf->write_avail -= srclen;
buf->read_avail += srclen;
return srclen;
}
size_t
ringbuffer_read(uint8_t **dst, size_t dstlen, struct ringbuffer *buf)
{
int remaining;
*dst = buf->buffer + buf->read_pos;
if (buf->read_avail == 0 || dstlen == 0)
return 0;
remaining = buf->size - buf->read_pos;
// The number of bytes we will return will be MIN(dstlen, remaining, read_avail)
if (dstlen > remaining)
dstlen = remaining;
if (dstlen > buf->read_avail)
dstlen = buf->read_avail;
buf->read_pos = (buf->read_pos + dstlen) % buf->size;
buf->write_avail += dstlen;
buf->read_avail -= dstlen;
return dstlen;
}
/* ------------------------- Clock utility functions ------------------------ */
int
clock_gettime_with_res(clockid_t clock_id, struct timespec *tp, struct timespec *res)
{
int ret;
if ((!tp) || (!res))
return -1;
ret = clock_gettime(clock_id, tp);
/* this will only work for sub-second resolutions. */
if (ret == 0 && res->tv_nsec > 1)
tp->tv_nsec = (tp->tv_nsec/res->tv_nsec)*res->tv_nsec;
return ret;
}
struct timespec
timespec_add(struct timespec time1, struct timespec time2)
{
struct timespec result;
result.tv_sec = time1.tv_sec + time2.tv_sec;
result.tv_nsec = time1.tv_nsec + time2.tv_nsec;
if (result.tv_nsec >= 1000000000L)
{
result.tv_sec++;
result.tv_nsec -= 1000000000L;
}
return result;
}
int
timespec_cmp(struct timespec time1, struct timespec time2)
{
/* Less than. */
if (time1.tv_sec < time2.tv_sec)
return -1;
/* Greater than. */
else if (time1.tv_sec > time2.tv_sec)
return 1;
/* Less than. */
else if (time1.tv_nsec < time2.tv_nsec)
return -1;
/* Greater than. */
else if (time1.tv_nsec > time2.tv_nsec)
return 1;
/* Equal. */
else
return 0;
}
struct timespec
timespec_reltoabs(struct timespec relative)
{
struct timespec absolute;
#ifdef CLOCK_REALTIME
clock_gettime(CLOCK_REALTIME, &absolute);
#else
struct timeval tv;
gettimeofday(&tv, NULL);
TIMEVAL_TO_TIMESPEC(&tv, &absolute);
#endif
return timespec_add(absolute, relative);
}
#if defined(HAVE_MACH_CLOCK) || defined(HAVE_MACH_TIMER)
#include <mach/mach_time.h> /* mach_absolute_time */
#include <mach/mach.h> /* host_get_clock_service */
#include <mach/clock.h> /* clock_get_time */
/* mach monotonic clock port */
extern mach_port_t clock_port;
#ifndef HAVE_CLOCK_GETTIME
int
clock_gettime(clockid_t clock_id, struct timespec *tp)
{
static int clock_init = 0;
static clock_serv_t clock;
mach_timespec_t mts;
int ret;
if (! clock_init) {
clock_init = 1;
if (host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &clock))
abort(); /* unlikely */
}
if(! tp)
return -1;
switch (clock_id) {
case CLOCK_REALTIME:
/* query mach for calendar time */
ret = clock_get_time(clock, &mts);
if (! ret) {
tp->tv_sec = mts.tv_sec;
tp->tv_nsec = mts.tv_nsec;
}
break;
case CLOCK_MONOTONIC:
/* query mach for monotinic time */
ret = clock_get_time(clock_port, &mts);
if (! ret) {
tp->tv_sec = mts.tv_sec;
tp->tv_nsec = mts.tv_nsec;
}
break;
default:
ret = -1;
break;
}
return ret;
}
int
clock_getres(clockid_t clock_id, struct timespec *res)
{
if (! res)
return -1;
/* hardcode ms resolution */
res->tv_sec = 0;
res->tv_nsec = 1000;
return 0;
}
#endif /* HAVE_CLOCK_GETTIME */
#ifndef HAVE_TIMER_SETTIME
#include <sys/time.h> /* ITIMER_REAL */
int
timer_create(clockid_t clock_id, void *sevp, timer_t *timer_id)
{
if (clock_id != CLOCK_MONOTONIC)
return -1;
if (sevp)
return -1;
/* setitimer only supports one timer */
*timer_id = 0;
return 0;
}
int
timer_delete(timer_t timer_id)
{
struct itimerval timerval;
if (timer_id != 0)
return -1;
memset(&timerval, 0, sizeof(struct itimerval));
return setitimer(ITIMER_REAL, &timerval, NULL);
}
int
timer_settime(timer_t timer_id, int flags, const struct itimerspec *tp, struct itimerspec *old)
{
struct itimerval tv;
if (timer_id != 0 || ! tp || old)
return -1;
TIMESPEC_TO_TIMEVAL(&(tv.it_value), &(tp->it_value));
TIMESPEC_TO_TIMEVAL(&(tv.it_interval), &(tp->it_interval));
return setitimer(ITIMER_REAL, &tv, NULL);
}
int
timer_getoverrun(timer_t timer_id)
{
/* since we don't know if there have been signals that weren't delivered,
assume none */
return 0;
}
#endif /* HAVE_TIMER_SETTIME */
#endif /* HAVE_MACH_CLOCK */
/* ------------------------------- Media quality ---------------------------- */
bool
quality_is_equal(struct media_quality *a, struct media_quality *b)
{
return (a->sample_rate == b->sample_rate && a->bits_per_sample == b->bits_per_sample && a->channels == b->channels && a->bit_rate == b->bit_rate);
}
/* -------------------------- Misc utility functions ------------------------ */
char **
buildopts_get()
{
return buildopts;
}
int
mutex_init(pthread_mutex_t *mutex)
{
pthread_mutexattr_t mattr;
int err;
CHECK_ERR(L_MISC, pthread_mutexattr_init(&mattr));
CHECK_ERR(L_MISC, pthread_mutexattr_settype(&mattr, PTHREAD_MUTEX_ERRORCHECK));
err = pthread_mutex_init(mutex, &mattr);
CHECK_ERR(L_MISC, pthread_mutexattr_destroy(&mattr));
return err;
}
void
thread_setname(pthread_t thread, const char *name)
{
#if defined(HAVE_PTHREAD_SETNAME_NP)
pthread_setname_np(thread, name);
#elif defined(HAVE_PTHREAD_SET_NAME_NP)
pthread_set_name_np(thread, name);
#endif
}
#ifdef HAVE_UUID
void
uuid_make(char *str)
{
uuid_t uu;
uuid_generate_random(uu);
uuid_unparse_upper(uu, str);
}
#else
void
uuid_make(char *str)
{
uint16_t uuid[8];
time_t now;
int i;
now = time(NULL);
srand((unsigned int)now);
for (i = 0; i < ARRAY_SIZE(uuid); i++)
{
uuid[i] = (uint16_t)rand();
// time_hi_and_version, set version to 4 (=random)
if (i == 3)
uuid[i] = (uuid[i] & 0x0FFF) | 0x4000;
// clock_seq, variant 1
if (i == 4)
uuid[i] = (uuid[i] & 0x3FFF) | 0x8000;
if (i == 2 || i == 3 || i == 4 || i == 5)
str += sprintf(str, "-");
str += sprintf(str, "%04" PRIX16, uuid[i]);
}
}
#endif
int
linear_regression(double *m, double *b, double *r2, const double *x, const double *y, int n)
{
double x_val;
double sum_x = 0;
double sum_x2 = 0;
double sum_y = 0;
double sum_y2 = 0;
double sum_xy = 0;
double denom;
int i;
for (i = 0; i < n; i++)
{
x_val = x ? x[i] : (double)i;
sum_x += x_val;
sum_x2 += x_val * x_val;
sum_y += y[i];
sum_y2 += y[i] * y[i];
sum_xy += x_val * y[i];
}
denom = (n * sum_x2 - sum_x * sum_x);
if (denom == 0)
return -1;
*m = (n * sum_xy - sum_x * sum_y) / denom;
*b = (sum_y * sum_x2 - sum_x * sum_xy) / denom;
if (r2)
*r2 = (sum_xy - (sum_x * sum_y)/n) * (sum_xy - (sum_x * sum_y)/n) / ((sum_x2 - (sum_x * sum_x)/n) * (sum_y2 - (sum_y * sum_y)/n));
return 0;
}
char **
m_readfile(const char *path, int num_lines)
{
char buf[256];
FILE *fp;
char **lines;
char *line;
int i;
// Alloc array of char pointers
lines = calloc(num_lines, sizeof(char *));
if (!lines)
return NULL;
fp = fopen(path, "rb");
if (!fp)
{
DPRINTF(E_LOG, L_MISC, "Could not open file '%s' for reading: %s\n", path, strerror(errno));
free(lines);
return NULL;
}
for (i = 0; i < num_lines; i++)
{
line = fgets(buf, sizeof(buf), fp);
if (!line)
{
DPRINTF(E_LOG, L_MISC, "File '%s' has fewer lines than expected (found %d, expected %d)\n", path, i, num_lines);
goto error;
}
lines[i] = atrim(line);
if (!lines[i] || (strlen(lines[i]) == 0))
{
DPRINTF(E_LOG, L_MISC, "Line %d in '%s' is invalid\n", i+1, path);
goto error;
}
}
fclose(fp);
return lines;
error:
for (i = 0; i < num_lines; i++)
free(lines[i]);
free(lines);
fclose(fp);
return NULL;
}
/* -------------------------------- Assertion ------------------------------- */
void
log_fatal_err(int domain, const char *func, int line, int err)
{
DPRINTF(E_FATAL, domain, "%s failed at line %d, error %d (%s)\n", func, line, err, strerror(err));
abort();
}
void
log_fatal_errno(int domain, const char *func, int line)
{
DPRINTF(E_FATAL, domain, "%s failed at line %d, error %d (%s)\n", func, line, errno, strerror(errno));
abort();
}
void
log_fatal_null(int domain, const char *func, int line)
{
DPRINTF(E_FATAL, domain, "%s returned NULL at line %d\n", func, line);
abort();
}