438 lines
14 KiB
C
438 lines
14 KiB
C
/*
|
|
* aes_icm.c
|
|
*
|
|
* AES Integer Counter Mode
|
|
*
|
|
* David A. McGrew
|
|
* Cisco Systems, Inc.
|
|
*/
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 2001-2017 Cisco Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Cisco Systems, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#define ALIGN_32 0
|
|
|
|
#include "aes_icm.h"
|
|
#include "alloc.h"
|
|
#include "cipher_types.h"
|
|
#include "cipher_test_cases.h"
|
|
|
|
srtp_debug_module_t srtp_mod_aes_icm = {
|
|
0, /* debugging is off by default */
|
|
"aes icm" /* printable module name */
|
|
};
|
|
|
|
/*
|
|
* integer counter mode works as follows:
|
|
*
|
|
* 16 bits
|
|
* <----->
|
|
* +------+------+------+------+------+------+------+------+
|
|
* | nonce | pakcet index | ctr |---+
|
|
* +------+------+------+------+------+------+------+------+ |
|
|
* |
|
|
* +------+------+------+------+------+------+------+------+ v
|
|
* | salt |000000|->(+)
|
|
* +------+------+------+------+------+------+------+------+ |
|
|
* |
|
|
* +---------+
|
|
* | encrypt |
|
|
* +---------+
|
|
* |
|
|
* +------+------+------+------+------+------+------+------+ |
|
|
* | keystream block |<--+
|
|
* +------+------+------+------+------+------+------+------+
|
|
*
|
|
* All fields are big-endian
|
|
*
|
|
* ctr is the block counter, which increments from zero for
|
|
* each packet (16 bits wide)
|
|
*
|
|
* packet index is distinct for each packet (48 bits wide)
|
|
*
|
|
* nonce can be distinct across many uses of the same key, or
|
|
* can be a fixed value per key, or can be per-packet randomness
|
|
* (64 bits)
|
|
*
|
|
*/
|
|
|
|
static srtp_err_status_t srtp_aes_icm_alloc(srtp_cipher_t **c,
|
|
int key_len,
|
|
int tlen)
|
|
{
|
|
srtp_aes_icm_ctx_t *icm;
|
|
(void)tlen;
|
|
|
|
debug_print(srtp_mod_aes_icm, "allocating cipher with key length %d",
|
|
key_len);
|
|
|
|
/*
|
|
* The check for key_len = 30/46 does not apply. Our usage
|
|
* of aes functions with key_len = values other than 30
|
|
* has not broken anything. Don't know what would be the
|
|
* effect of skipping this check for srtp in general.
|
|
*/
|
|
if (key_len != SRTP_AES_ICM_128_KEY_LEN_WSALT &&
|
|
key_len != SRTP_AES_ICM_256_KEY_LEN_WSALT) {
|
|
return srtp_err_status_bad_param;
|
|
}
|
|
|
|
/* allocate memory a cipher of type aes_icm */
|
|
*c = (srtp_cipher_t *)srtp_crypto_alloc(sizeof(srtp_cipher_t));
|
|
if (*c == NULL) {
|
|
return srtp_err_status_alloc_fail;
|
|
}
|
|
|
|
icm = (srtp_aes_icm_ctx_t *)srtp_crypto_alloc(sizeof(srtp_aes_icm_ctx_t));
|
|
if (icm == NULL) {
|
|
srtp_crypto_free(*c);
|
|
*c = NULL;
|
|
return srtp_err_status_alloc_fail;
|
|
}
|
|
|
|
/* set pointers */
|
|
(*c)->state = icm;
|
|
|
|
switch (key_len) {
|
|
case SRTP_AES_ICM_256_KEY_LEN_WSALT:
|
|
(*c)->algorithm = SRTP_AES_ICM_256;
|
|
(*c)->type = &srtp_aes_icm_256;
|
|
break;
|
|
default:
|
|
(*c)->algorithm = SRTP_AES_ICM_128;
|
|
(*c)->type = &srtp_aes_icm_128;
|
|
break;
|
|
}
|
|
|
|
/* set key size */
|
|
icm->key_size = key_len;
|
|
(*c)->key_len = key_len;
|
|
|
|
return srtp_err_status_ok;
|
|
}
|
|
|
|
static srtp_err_status_t srtp_aes_icm_dealloc(srtp_cipher_t *c)
|
|
{
|
|
srtp_aes_icm_ctx_t *ctx;
|
|
|
|
if (c == NULL) {
|
|
return srtp_err_status_bad_param;
|
|
}
|
|
|
|
ctx = (srtp_aes_icm_ctx_t *)c->state;
|
|
if (ctx) {
|
|
/* zeroize the key material */
|
|
octet_string_set_to_zero(ctx, sizeof(srtp_aes_icm_ctx_t));
|
|
srtp_crypto_free(ctx);
|
|
}
|
|
|
|
/* free the cipher context */
|
|
srtp_crypto_free(c);
|
|
|
|
return srtp_err_status_ok;
|
|
}
|
|
|
|
/*
|
|
* aes_icm_context_init(...) initializes the aes_icm_context
|
|
* using the value in key[].
|
|
*
|
|
* the key is the secret key
|
|
*
|
|
* the salt is unpredictable (but not necessarily secret) data which
|
|
* randomizes the starting point in the keystream
|
|
*/
|
|
|
|
static srtp_err_status_t srtp_aes_icm_context_init(void *cv, const uint8_t *key)
|
|
{
|
|
srtp_aes_icm_ctx_t *c = (srtp_aes_icm_ctx_t *)cv;
|
|
srtp_err_status_t status;
|
|
int base_key_len, copy_len;
|
|
|
|
if (c->key_size == SRTP_AES_ICM_128_KEY_LEN_WSALT ||
|
|
c->key_size == SRTP_AES_ICM_256_KEY_LEN_WSALT) {
|
|
base_key_len = c->key_size - SRTP_SALT_LEN;
|
|
} else {
|
|
return srtp_err_status_bad_param;
|
|
}
|
|
|
|
/*
|
|
* set counter and initial values to 'offset' value, being careful not to
|
|
* go past the end of the key buffer
|
|
*/
|
|
v128_set_to_zero(&c->counter);
|
|
v128_set_to_zero(&c->offset);
|
|
|
|
copy_len = c->key_size - base_key_len;
|
|
/* force last two octets of the offset to be left zero (for srtp
|
|
* compatibility) */
|
|
if (copy_len > SRTP_SALT_LEN) {
|
|
copy_len = SRTP_SALT_LEN;
|
|
}
|
|
|
|
memcpy(&c->counter, key + base_key_len, copy_len);
|
|
memcpy(&c->offset, key + base_key_len, copy_len);
|
|
|
|
debug_print(srtp_mod_aes_icm, "key: %s",
|
|
srtp_octet_string_hex_string(key, base_key_len));
|
|
debug_print(srtp_mod_aes_icm, "offset: %s", v128_hex_string(&c->offset));
|
|
|
|
/* expand key */
|
|
status =
|
|
srtp_aes_expand_encryption_key(key, base_key_len, &c->expanded_key);
|
|
if (status) {
|
|
v128_set_to_zero(&c->counter);
|
|
v128_set_to_zero(&c->offset);
|
|
return status;
|
|
}
|
|
|
|
/* indicate that the keystream_buffer is empty */
|
|
c->bytes_in_buffer = 0;
|
|
|
|
return srtp_err_status_ok;
|
|
}
|
|
|
|
/*
|
|
* aes_icm_set_iv(c, iv) sets the counter value to the exor of iv with
|
|
* the offset
|
|
*/
|
|
|
|
static srtp_err_status_t srtp_aes_icm_set_iv(void *cv,
|
|
uint8_t *iv,
|
|
srtp_cipher_direction_t direction)
|
|
{
|
|
srtp_aes_icm_ctx_t *c = (srtp_aes_icm_ctx_t *)cv;
|
|
v128_t nonce;
|
|
(void)direction;
|
|
|
|
/* set nonce (for alignment) */
|
|
v128_copy_octet_string(&nonce, iv);
|
|
|
|
debug_print(srtp_mod_aes_icm, "setting iv: %s", v128_hex_string(&nonce));
|
|
|
|
v128_xor(&c->counter, &c->offset, &nonce);
|
|
|
|
debug_print(srtp_mod_aes_icm, "set_counter: %s",
|
|
v128_hex_string(&c->counter));
|
|
|
|
/* indicate that the keystream_buffer is empty */
|
|
c->bytes_in_buffer = 0;
|
|
|
|
return srtp_err_status_ok;
|
|
}
|
|
|
|
/*
|
|
* aes_icm_advance(...) refills the keystream_buffer and
|
|
* advances the block index of the sicm_context forward by one
|
|
*
|
|
* this is an internal, hopefully inlined function
|
|
*/
|
|
static void srtp_aes_icm_advance(srtp_aes_icm_ctx_t *c)
|
|
{
|
|
/* fill buffer with new keystream */
|
|
v128_copy(&c->keystream_buffer, &c->counter);
|
|
srtp_aes_encrypt(&c->keystream_buffer, &c->expanded_key);
|
|
c->bytes_in_buffer = sizeof(v128_t);
|
|
|
|
debug_print(srtp_mod_aes_icm, "counter: %s",
|
|
v128_hex_string(&c->counter));
|
|
debug_print(srtp_mod_aes_icm, "ciphertext: %s",
|
|
v128_hex_string(&c->keystream_buffer));
|
|
|
|
/* clock counter forward */
|
|
if (!++(c->counter.v8[15])) {
|
|
++(c->counter.v8[14]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* icm_encrypt deals with the following cases:
|
|
*
|
|
* bytes_to_encr < bytes_in_buffer
|
|
* - add keystream into data
|
|
*
|
|
* bytes_to_encr > bytes_in_buffer
|
|
* - add keystream into data until keystream_buffer is depleted
|
|
* - loop over blocks, filling keystream_buffer and then
|
|
* adding keystream into data
|
|
* - fill buffer then add in remaining (< 16) bytes of keystream
|
|
*/
|
|
|
|
static srtp_err_status_t srtp_aes_icm_encrypt(void *cv,
|
|
unsigned char *buf,
|
|
unsigned int *enc_len)
|
|
{
|
|
srtp_aes_icm_ctx_t *c = (srtp_aes_icm_ctx_t *)cv;
|
|
unsigned int bytes_to_encr = *enc_len;
|
|
unsigned int i;
|
|
uint32_t *b;
|
|
|
|
/* check that there's enough segment left*/
|
|
unsigned int bytes_of_new_keystream = bytes_to_encr - c->bytes_in_buffer;
|
|
unsigned int blocks_of_new_keystream = (bytes_of_new_keystream + 15) >> 4;
|
|
if ((blocks_of_new_keystream + htons(c->counter.v16[7])) > 0xffff) {
|
|
return srtp_err_status_terminus;
|
|
}
|
|
|
|
debug_print(srtp_mod_aes_icm, "block index: %d", htons(c->counter.v16[7]));
|
|
if (bytes_to_encr <= (unsigned int)c->bytes_in_buffer) {
|
|
/* deal with odd case of small bytes_to_encr */
|
|
for (i = (sizeof(v128_t) - c->bytes_in_buffer);
|
|
i < (sizeof(v128_t) - c->bytes_in_buffer + bytes_to_encr); i++) {
|
|
*buf++ ^= c->keystream_buffer.v8[i];
|
|
}
|
|
|
|
c->bytes_in_buffer -= bytes_to_encr;
|
|
|
|
/* return now to avoid the main loop */
|
|
return srtp_err_status_ok;
|
|
|
|
} else {
|
|
/* encrypt bytes until the remaining data is 16-byte aligned */
|
|
for (i = (sizeof(v128_t) - c->bytes_in_buffer); i < sizeof(v128_t);
|
|
i++) {
|
|
*buf++ ^= c->keystream_buffer.v8[i];
|
|
}
|
|
|
|
bytes_to_encr -= c->bytes_in_buffer;
|
|
c->bytes_in_buffer = 0;
|
|
}
|
|
|
|
/* now loop over entire 16-byte blocks of keystream */
|
|
for (i = 0; i < (bytes_to_encr / sizeof(v128_t)); i++) {
|
|
/* fill buffer with new keystream */
|
|
srtp_aes_icm_advance(c);
|
|
|
|
/*
|
|
* add keystream into the data buffer (this would be a lot faster
|
|
* if we could assume 32-bit alignment!)
|
|
*/
|
|
|
|
#if ALIGN_32
|
|
b = (uint32_t *)buf;
|
|
*b++ ^= c->keystream_buffer.v32[0];
|
|
*b++ ^= c->keystream_buffer.v32[1];
|
|
*b++ ^= c->keystream_buffer.v32[2];
|
|
*b++ ^= c->keystream_buffer.v32[3];
|
|
buf = (uint8_t *)b;
|
|
#else
|
|
if ((((uintptr_t)buf) & 0x03) != 0) {
|
|
*buf++ ^= c->keystream_buffer.v8[0];
|
|
*buf++ ^= c->keystream_buffer.v8[1];
|
|
*buf++ ^= c->keystream_buffer.v8[2];
|
|
*buf++ ^= c->keystream_buffer.v8[3];
|
|
*buf++ ^= c->keystream_buffer.v8[4];
|
|
*buf++ ^= c->keystream_buffer.v8[5];
|
|
*buf++ ^= c->keystream_buffer.v8[6];
|
|
*buf++ ^= c->keystream_buffer.v8[7];
|
|
*buf++ ^= c->keystream_buffer.v8[8];
|
|
*buf++ ^= c->keystream_buffer.v8[9];
|
|
*buf++ ^= c->keystream_buffer.v8[10];
|
|
*buf++ ^= c->keystream_buffer.v8[11];
|
|
*buf++ ^= c->keystream_buffer.v8[12];
|
|
*buf++ ^= c->keystream_buffer.v8[13];
|
|
*buf++ ^= c->keystream_buffer.v8[14];
|
|
*buf++ ^= c->keystream_buffer.v8[15];
|
|
} else {
|
|
b = (uint32_t *)buf;
|
|
*b++ ^= c->keystream_buffer.v32[0];
|
|
*b++ ^= c->keystream_buffer.v32[1];
|
|
*b++ ^= c->keystream_buffer.v32[2];
|
|
*b++ ^= c->keystream_buffer.v32[3];
|
|
buf = (uint8_t *)b;
|
|
}
|
|
#endif /* #if ALIGN_32 */
|
|
}
|
|
|
|
/* if there is a tail end of the data, process it */
|
|
if ((bytes_to_encr & 0xf) != 0) {
|
|
/* fill buffer with new keystream */
|
|
srtp_aes_icm_advance(c);
|
|
|
|
for (i = 0; i < (bytes_to_encr & 0xf); i++) {
|
|
*buf++ ^= c->keystream_buffer.v8[i];
|
|
}
|
|
|
|
/* reset the keystream buffer size to right value */
|
|
c->bytes_in_buffer = sizeof(v128_t) - i;
|
|
} else {
|
|
/* no tail, so just reset the keystream buffer size to zero */
|
|
c->bytes_in_buffer = 0;
|
|
}
|
|
|
|
return srtp_err_status_ok;
|
|
}
|
|
|
|
static const char srtp_aes_icm_128_description[] =
|
|
"AES-128 integer counter mode";
|
|
static const char srtp_aes_icm_256_description[] =
|
|
"AES-256 integer counter mode";
|
|
|
|
/*
|
|
* note: the encrypt function is identical to the decrypt function
|
|
*/
|
|
|
|
const srtp_cipher_type_t srtp_aes_icm_128 = {
|
|
srtp_aes_icm_alloc, /* */
|
|
srtp_aes_icm_dealloc, /* */
|
|
srtp_aes_icm_context_init, /* */
|
|
0, /* set_aad */
|
|
srtp_aes_icm_encrypt, /* */
|
|
srtp_aes_icm_encrypt, /* */
|
|
srtp_aes_icm_set_iv, /* */
|
|
0, /* get_tag */
|
|
srtp_aes_icm_128_description, /* */
|
|
&srtp_aes_icm_128_test_case_0, /* */
|
|
SRTP_AES_ICM_128 /* */
|
|
};
|
|
|
|
const srtp_cipher_type_t srtp_aes_icm_256 = {
|
|
srtp_aes_icm_alloc, /* */
|
|
srtp_aes_icm_dealloc, /* */
|
|
srtp_aes_icm_context_init, /* */
|
|
0, /* set_aad */
|
|
srtp_aes_icm_encrypt, /* */
|
|
srtp_aes_icm_encrypt, /* */
|
|
srtp_aes_icm_set_iv, /* */
|
|
0, /* get_tag */
|
|
srtp_aes_icm_256_description, /* */
|
|
&srtp_aes_icm_256_test_case_0, /* */
|
|
SRTP_AES_ICM_256 /* */
|
|
};
|