pulumi/pkg/resource/deploy/source.go

144 lines
5.3 KiB
Go
Raw Permalink Normal View History

2018-05-22 19:43:36 +00:00
// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package deploy
import (
"context"
"io"
"github.com/pulumi/pulumi/pkg/v3/resource/deploy/providers"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource/plugin"
"github.com/pulumi/pulumi/sdk/v3/go/common/tokens"
pulumirpc "github.com/pulumi/pulumi/sdk/v3/proto/go"
Remove deprecated Protobufs imports (#15158) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> github.com/golang/protobuf is marked deprecated and I was getting increasingly triggered by the inconsistency of importing the `Empty` type from "github.com/golang/protobuf/ptypes/empty" or "google.golang.org/protobuf/types/known/emptypb" as "pbempty" or "empty" or "emptypb". Similar for the struct type. So this replaces all the Protobufs imports with ones from "google.golang.org/protobuf", normalises the import name to always just be the module name (emptypb), and adds the depguard linter to ensure we don't use the deprecated package anymore. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [ ] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2024-01-17 09:35:20 +00:00
"google.golang.org/protobuf/types/known/emptypb"
)
type ResultState int
const (
ResultStateSuccess ResultState = iota
ResultStateFailed
ResultStateSkipped
)
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
// A ProviderSource allows a Source to lookup provider plugins.
type ProviderSource interface {
// GetProvider fetches the provider plugin for the given reference.
GetProvider(ref providers.Reference) (plugin.Provider, bool)
}
// A Source can generate a new set of resources that the planner will process accordingly.
type Source interface {
io.Closer
// Project returns the package name of the Pulumi project we are obtaining resources from.
Project() tokens.PackageName
// Info returns a serializable payload that can be used to stamp snapshots for future reconciliation.
Info() interface{}
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
// Iterate begins iterating the source. Error is non-nil upon failure; otherwise, a valid iterator is returned.
Iterate(ctx context.Context, opts Options, providers ProviderSource) (SourceIterator, error)
}
// A SourceIterator enumerates the list of resources that a source has to offer and tracks associated state.
type SourceIterator interface {
io.Closer
// Next returns the next event from the source.
Next() (SourceEvent, error)
Implement `get` functions on all resources This change implements the `get` function for resources. Per pulumi/lumi#83, this allows Lumi scripts to actually read from the target environment. For example, we can now look up a SecurityGroup from its ARN: let group = aws.ec2.SecurityGroup.get( "arn:aws:ec2:us-west-2:153052954103:security-group:sg-02150d79"); The returned object is a fully functional resource object. So, we can then link it up with an EC2 instance, for example, in the usual ways: let instance = new aws.ec2.Instance(..., { securityGroups: [ group ], }); This didn't require any changes to the RPC or provider model, since we already implement the Get function. There are a few loose ends; two are short term: 1) URNs are not rehydrated. 2) Query is not yet implemented. One is mid-term: 3) We probably want a URN-based lookup function. But we will likely wait until we tackle pulumi/lumi#109 before adding this. And one is long term (and subtle): 4) These amount to I/O and are not repeatable! A change in the target environment may cause a script to generate a different plan intermittently. Most likely we want to apply a different kind of deployment "policy" for such scripts. These are inching towards the scripting model of pulumi/lumi#121, which is an entirely different beast than the repeatable immutable infrastructure deployments. Finally, it is worth noting that with this, we have some of the fundamental underpinnings required to finally tackle "inference" (pulumi/lumi#142).
2017-06-20 00:24:00 +00:00
}
// SourceResourceMonitor directs resource operations from the `Source` to various resource
// providers.
type SourceResourceMonitor interface {
// NOTE: This interface does not implement pulumirpc.ResourceMonitorClient because the eval and
// query implementations of `Source` do not implement precisely the same signatures.
Address() string
Cancel() error
Invoke(ctx context.Context, req *pulumirpc.ResourceInvokeRequest) (*pulumirpc.InvokeResponse, error)
Split CallRequest into ResourceCallRequest (#15404) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> Similar to what we did to the `InvokeRequest` a while ago. We're currently using the same protobuf structure for `Provider.Call` and `ResourceMonitor.Call` despite different field sets being filled in for each of them. This splits the structure into `CallRequest` for providers and `ResourceCallRequest` for the resource monitor. A number of fields in each are removed and marked reserved with a comment explaining why. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2024-02-08 13:16:23 +00:00
Call(ctx context.Context, req *pulumirpc.ResourceCallRequest) (*pulumirpc.CallResponse, error)
ReadResource(ctx context.Context,
req *pulumirpc.ReadResourceRequest) (*pulumirpc.ReadResourceResponse, error)
RegisterResource(ctx context.Context,
req *pulumirpc.RegisterResourceRequest) (*pulumirpc.RegisterResourceResponse, error)
RegisterResourceOutputs(ctx context.Context,
Remove deprecated Protobufs imports (#15158) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> github.com/golang/protobuf is marked deprecated and I was getting increasingly triggered by the inconsistency of importing the `Empty` type from "github.com/golang/protobuf/ptypes/empty" or "google.golang.org/protobuf/types/known/emptypb" as "pbempty" or "empty" or "emptypb". Similar for the struct type. So this replaces all the Protobufs imports with ones from "google.golang.org/protobuf", normalises the import name to always just be the module name (emptypb), and adds the depguard linter to ensure we don't use the deprecated package anymore. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [ ] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2024-01-17 09:35:20 +00:00
req *pulumirpc.RegisterResourceOutputsRequest) (*emptypb.Empty, error)
}
// SourceEvent is an event associated with the enumeration of a plan. It is an intent expressed by the source
// program, and it is the responsibility of the engine to make it so.
type SourceEvent interface {
event()
}
// RegisterResourceEvent is a step that asks the engine to provision a resource.
type RegisterResourceEvent interface {
SourceEvent
// Goal returns the goal state for the resource object that was allocated by the program.
Goal() *resource.Goal
// Done indicates that we are done with this step. It must be called to perform cleanup associated with the step.
Done(result *RegisterResult)
}
// RegisterResult is the state of the resource after it has been registered.
type RegisterResult struct {
State *resource.State // the resource state.
Result ResultState // the result of the registration.
}
// RegisterResourceOutputsEvent is an event that asks the engine to complete the provisioning of a resource.
type RegisterResourceOutputsEvent interface {
SourceEvent
// URN is the resource URN that this completion applies to.
URN() resource.URN
// Outputs returns a property map of output properties to add to a resource before completing.
Outputs() resource.PropertyMap
// Done indicates that we are done with this step. It must be called to perform cleanup associated with the step.
Done()
}
// ReadResourceEvent is an event that asks the engine to read the state of an existing resource.
type ReadResourceEvent interface {
SourceEvent
// ID is the requested ID of this read.
ID() resource.ID
// Name is the requested name of this read.
Allow anything in resource names (#14107) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> Fixes https://github.com/pulumi/pulumi/issues/13968. Fixes https://github.com/pulumi/pulumi/issues/8949. This requires changing the parsing of URN's slightly, it is _very_ likely that providers will need to update to handle URNs like this correctly. This changes resource names to be `string` not `QName`. We never validated this before and it turns out that users have put all manner of text for resource names so we just updating the system to correctly reflect that. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-11-20 08:59:00 +00:00
Name() string
// Type is type of the resource being read.
Type() tokens.Type
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
// Provider is a reference to the provider instance to use for this read.
Provider() string
// Parent is the parent resource of the resource being read.
Parent() resource.URN
// Properties is the property bag that will be passed to Read as search parameters.
Properties() resource.PropertyMap
// Dependencies returns the list of URNs upon which this read depends.
Dependencies() []resource.URN
// Done indicates that we are done with this event.
Done(result *ReadResult)
// The names of any additional outputs that should be treated as secrets.
AdditionalSecretOutputs() []resource.PropertyKey
[engine] Add support for source positions These changes add support for passing source position information in gRPC metadata and recording the source position that corresponds to a resource registration in the statefile. Enabling source position information in the resource model can provide substantial benefits, including but not limited to: - Better errors from the Pulumi CLI - Go-to-defintion for resources in state - Editor integration for errors, etc. from `pulumi preview` Source positions are (file, line) or (file, line, column) tuples represented as URIs. The line and column are stored in the fragment portion of the URI as "line(,column)?". The scheme of the URI and the form of its path component depends on the context in which it is generated or used: - During an active update, the URI's scheme is `file` and paths are absolute filesystem paths. This allows consumers to easily access arbitrary files that are available on the host. - In a statefile, the URI's scheme is `project` and paths are relative to the project root. This allows consumers to resolve source positions relative to the project file in different contexts irrespective of the location of the project itself (e.g. given a project-relative path and the URL of the project's root on GitHub, one can build a GitHub URL for the source position). During an update, source position information may be attached to gRPC calls as "source-position" metadata. This allows arbitrary calls to be associated with source positions without changes to their protobuf payloads. Modifying the protobuf payloads is also a viable approach, but is somewhat more invasive than attaching metadata, and requires changes to every call signature. Source positions should reflect the position in user code that initiated a resource model operation (e.g. the source position passed with `RegisterResource` for `pet` in the example above should be the source position in `index.ts`, _not_ the source position in the Pulumi SDK). In general, the Pulumi SDK should be able to infer the source position of the resource registration, as the relationship between a resource registration and its corresponding user code should be static per SDK. Source positions in state files will be stored as a new `registeredAt` property on each resource. This property is optional.
2023-06-29 18:41:19 +00:00
// The source position of the resource read
SourcePosition() string
}
type ReadResult struct {
State *resource.State
Result ResultState
}