pulumi/pkg/resource/deploy/deploytest/languageruntime.go

138 lines
4.0 KiB
Go
Raw Permalink Normal View History

Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package deploytest
import (
"context"
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
"errors"
"io"
"github.com/blang/semver"
"github.com/hashicorp/hcl/v2"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource/plugin"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/pulumi/pulumi/sdk/v3/go/common/workspace"
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
)
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
var ErrLanguageRuntimeIsClosed = errors.New("language runtime is shutting down")
type LanguageRuntimeFactory func() plugin.LanguageRuntime
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
type ProgramFunc func(runInfo plugin.RunInfo, monitor *ResourceMonitor) error
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
func NewLanguageRuntimeF(program ProgramFunc, requiredPlugins ...workspace.PluginSpec) LanguageRuntimeFactory {
return func() plugin.LanguageRuntime {
return NewLanguageRuntime(program, requiredPlugins...)
}
}
func NewLanguageRuntime(program ProgramFunc, requiredPlugins ...workspace.PluginSpec) plugin.LanguageRuntime {
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
return &languageRuntime{
requiredPlugins: requiredPlugins,
program: program,
}
}
type languageRuntime struct {
requiredPlugins []workspace.PluginSpec
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
program ProgramFunc
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
closed bool
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
}
func (p *languageRuntime) Close() error {
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
p.closed = true
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
return nil
}
func (p *languageRuntime) GetRequiredPlugins(info plugin.ProgInfo) ([]workspace.PluginSpec, error) {
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
if p.closed {
return nil, ErrLanguageRuntimeIsClosed
}
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
return p.requiredPlugins, nil
}
func (p *languageRuntime) Run(info plugin.RunInfo) (string, bool, error) {
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
if p.closed {
return "", false, ErrLanguageRuntimeIsClosed
}
monitor, err := dialMonitor(context.Background(), info.MonitorAddress)
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
if err != nil {
Initial support for remote component construction. (#5280) These changes add initial support for the construction of remote components. For now, this support is limited to the NodeJS SDK; follow-up changes will implement support for the other SDKs. Remote components are component resources that are constructed and managed by plugins rather than by Pulumi programs. In this sense, they are a bit like cloud resources, and are supported by the same distribution and plugin loading mechanisms and described by the same schema system. The construction of a remote component is initiated by a `RegisterResourceRequest` with the new `remote` field set to `true`. When the resource monitor receives such a request, it loads the plugin that implements the component resource and calls the `Construct` method added to the resource provider interface as part of these changes. This method accepts the information necessary to construct the component and its children: the component's name, type, resource options, inputs, and input dependencies. It is responsible for dispatching to the appropriate component factory to create the component, then returning its URN, resolved output properties, and output property dependencies. The dependency information is necessary to support features such as delete-before-replace, which rely on precise dependency information for custom resources. These changes also add initial support for more conveniently implementing resource providers in NodeJS. The interface used to implement such a provider is similar to the dynamic provider interface (and may be unified with that interface in the future). An example of a NodeJS program constructing a remote component resource also implemented in NodeJS can be found in `tests/construct_component/nodejs`. This is the core of #2430.
2020-09-08 02:33:55 +00:00
return "", false, err
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
}
Initial support for remote component construction. (#5280) These changes add initial support for the construction of remote components. For now, this support is limited to the NodeJS SDK; follow-up changes will implement support for the other SDKs. Remote components are component resources that are constructed and managed by plugins rather than by Pulumi programs. In this sense, they are a bit like cloud resources, and are supported by the same distribution and plugin loading mechanisms and described by the same schema system. The construction of a remote component is initiated by a `RegisterResourceRequest` with the new `remote` field set to `true`. When the resource monitor receives such a request, it loads the plugin that implements the component resource and calls the `Construct` method added to the resource provider interface as part of these changes. This method accepts the information necessary to construct the component and its children: the component's name, type, resource options, inputs, and input dependencies. It is responsible for dispatching to the appropriate component factory to create the component, then returning its URN, resolved output properties, and output property dependencies. The dependency information is necessary to support features such as delete-before-replace, which rely on precise dependency information for custom resources. These changes also add initial support for more conveniently implementing resource providers in NodeJS. The interface used to implement such a provider is similar to the dynamic provider interface (and may be unified with that interface in the future). An example of a NodeJS program constructing a remote component resource also implemented in NodeJS can be found in `tests/construct_component/nodejs`. This is the core of #2430.
2020-09-08 02:33:55 +00:00
defer contract.IgnoreClose(monitor)
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
// Run the program.
done := make(chan error)
go func() {
Initial support for remote component construction. (#5280) These changes add initial support for the construction of remote components. For now, this support is limited to the NodeJS SDK; follow-up changes will implement support for the other SDKs. Remote components are component resources that are constructed and managed by plugins rather than by Pulumi programs. In this sense, they are a bit like cloud resources, and are supported by the same distribution and plugin loading mechanisms and described by the same schema system. The construction of a remote component is initiated by a `RegisterResourceRequest` with the new `remote` field set to `true`. When the resource monitor receives such a request, it loads the plugin that implements the component resource and calls the `Construct` method added to the resource provider interface as part of these changes. This method accepts the information necessary to construct the component and its children: the component's name, type, resource options, inputs, and input dependencies. It is responsible for dispatching to the appropriate component factory to create the component, then returning its URN, resolved output properties, and output property dependencies. The dependency information is necessary to support features such as delete-before-replace, which rely on precise dependency information for custom resources. These changes also add initial support for more conveniently implementing resource providers in NodeJS. The interface used to implement such a provider is similar to the dynamic provider interface (and may be unified with that interface in the future). An example of a NodeJS program constructing a remote component resource also implemented in NodeJS can be found in `tests/construct_component/nodejs`. This is the core of #2430.
2020-09-08 02:33:55 +00:00
done <- p.program(info, monitor)
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
}()
if progerr := <-done; progerr != nil {
return progerr.Error(), false, nil
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
}
return "", false, nil
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
}
func (p *languageRuntime) GetPluginInfo() (workspace.PluginInfo, error) {
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
if p.closed {
return workspace.PluginInfo{}, ErrLanguageRuntimeIsClosed
}
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
return workspace.PluginInfo{Name: "TestLanguage"}, nil
}
Move InstallDependencies to the language plugin (#9294) * Move InstallDependencies to the language plugin This changes `pulumi new` and `pulumi up <template>` to invoke the language plugin to install dependencies, rather than having the code to install dependencies hardcoded into the cli itself. This does not change the way policypacks or plugin dependencies are installed. In theory we can make pretty much the same change to just invoke the language plugin, but baby steps we don't need to make that change at the same time as this. We used to feed the result of these install commands (dotnet build, npm install, etc) directly through to the CLI stdout/stderr. To mostly maintain that behaviour the InstallDependencies gRCP method streams back bytes to be written to stdout/stderr, those bytes are either read from pipes or a pty that we run the install commands with. The use of a pty is controlled by the global colorisation option in the cli. An alternative designs was to use the Engine interface to Log the results of install commands. This renders very differently to just writing directly to the standard outputs and I don't think would support control codes so well. The design as is means that `npm install` for example is still able to display a progress bar and colors even though we're running it in a separate process and streaming its output back via gRPC. The only "oddity" I feel that's fallen out of this work is that InstallDependencies for python used to overwrite the virtualenv runtime option. It looks like this was because our templates don't bother setting that. Because InstallDependencies doesn't have the project file, and at any rate will be used for policy pack projects in the future, I've moved that logic into `pulumi new` when it mutates the other project file settings. I think we should at some point cleanup so the templates correctly indicate to use a venv, or maybe change python to assume a virtual env of "venv" if none is given? * Just warn if pty fails to open * Add tests and return real tty files * Add to CHANGELOG * lint * format * Test strings * Log pty opening for trace debugging * s/Hack/Workaround * Use termios * Tweak terminal test * lint * Fix windows build
2022-04-03 14:54:59 +00:00
Pass root and main info to language host methods (#14654) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This is two changes rolled together in a way. Firstly passing some of the data that we pass on language runtime startup to also pass it to Run/GetRequiredPlugins/etc. This is needed for matrix testing, as we only get to start the language runtime up once for that but want to execute multiple programs with it. I feel it's also a little more consistent as we use the language runtimes in other contexts (codegen) where there isn't really a root directory, and aren't any options (and if we did do options the options for codegen are not going to be the same as for execution). It also means we can reuse a language host for shimless and substack programs, as before they heavily relied on their current working directory to calculate paths, and obviosly could only take one set of options at startup. Imagine a shimless python package + a python root program, that would have needed two startups of the python language host to deal with, this unblocks it so we can make the engine smarter and only use one. Secondly renaming some of the fields we pass to Run/GetRequiredPlugins/etc today. `Pwd` and `Program` were not very descriptive and had pretty non-obvious documentation: ``` string pwd = 3; // the program's working directory. string program = 4; // the path to the program to execute. ``` `pwd` will remain, although probably rename it to `working_directory` at some point, because while today we always start programs up with the working directory equal to the program directory that definitely is going to change in the future (at least for MLCs and substack programs). But the name `pwd` doesn't make it clear that this was intended to be the working directory _and_ the directory which contains the program. `program` was in fact nearly always ".", and if it wasn't that it was just a filename. The engine never sent a path for `program` (although we did have some unit tests to check how that worked for the nodejs and python hosts). These are now replaced by a new structure with (I think) more clearly named and documented fields (see ProgramInfo in langauge.proto). The engine still sends the old data for now, we need to update dotnet/yaml/java before we break the old interface and give Virtus Labs a chance to update [besom](https://github.com/VirtusLab/besom). ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [ ] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [ ] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-12-10 17:30:51 +00:00
func (p *languageRuntime) InstallDependencies(pwd, main string) error {
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
if p.closed {
return ErrLanguageRuntimeIsClosed
}
Move InstallDependencies to the language plugin (#9294) * Move InstallDependencies to the language plugin This changes `pulumi new` and `pulumi up <template>` to invoke the language plugin to install dependencies, rather than having the code to install dependencies hardcoded into the cli itself. This does not change the way policypacks or plugin dependencies are installed. In theory we can make pretty much the same change to just invoke the language plugin, but baby steps we don't need to make that change at the same time as this. We used to feed the result of these install commands (dotnet build, npm install, etc) directly through to the CLI stdout/stderr. To mostly maintain that behaviour the InstallDependencies gRCP method streams back bytes to be written to stdout/stderr, those bytes are either read from pipes or a pty that we run the install commands with. The use of a pty is controlled by the global colorisation option in the cli. An alternative designs was to use the Engine interface to Log the results of install commands. This renders very differently to just writing directly to the standard outputs and I don't think would support control codes so well. The design as is means that `npm install` for example is still able to display a progress bar and colors even though we're running it in a separate process and streaming its output back via gRPC. The only "oddity" I feel that's fallen out of this work is that InstallDependencies for python used to overwrite the virtualenv runtime option. It looks like this was because our templates don't bother setting that. Because InstallDependencies doesn't have the project file, and at any rate will be used for policy pack projects in the future, I've moved that logic into `pulumi new` when it mutates the other project file settings. I think we should at some point cleanup so the templates correctly indicate to use a venv, or maybe change python to assume a virtual env of "venv" if none is given? * Just warn if pty fails to open * Add tests and return real tty files * Add to CHANGELOG * lint * format * Test strings * Log pty opening for trace debugging * s/Hack/Workaround * Use termios * Tweak terminal test * lint * Fix windows build
2022-04-03 14:54:59 +00:00
return nil
}
func (p *languageRuntime) About() (plugin.AboutInfo, error) {
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
if p.closed {
return plugin.AboutInfo{}, ErrLanguageRuntimeIsClosed
}
return plugin.AboutInfo{}, nil
}
func (p *languageRuntime) GetProgramDependencies(
all: Reformat with gofumpt Per team discussion, switching to gofumpt. [gofumpt][1] is an alternative, stricter alternative to gofmt. It addresses other stylistic concerns that gofmt doesn't yet cover. [1]: https://github.com/mvdan/gofumpt See the full list of [Added rules][2], but it includes: - Dropping empty lines around function bodies - Dropping unnecessary variable grouping when there's only one variable - Ensuring an empty line between multi-line functions - simplification (`-s` in gofmt) is always enabled - Ensuring multi-line function signatures end with `) {` on a separate line. [2]: https://github.com/mvdan/gofumpt#Added-rules gofumpt is stricter, but there's no lock-in. All gofumpt output is valid gofmt output, so if we decide we don't like it, it's easy to switch back without any code changes. gofumpt support is built into the tooling we use for development so this won't change development workflows. - golangci-lint includes a gofumpt check (enabled in this PR) - gopls, the LSP for Go, includes a gofumpt option (see [installation instrutions][3]) [3]: https://github.com/mvdan/gofumpt#installation This change was generated by running: ```bash gofumpt -w $(rg --files -g '*.go' | rg -v testdata | rg -v compilation_error) ``` The following files were manually tweaked afterwards: - pkg/cmd/pulumi/stack_change_secrets_provider.go: one of the lines overflowed and had comments in an inconvenient place - pkg/cmd/pulumi/destroy.go: `var x T = y` where `T` wasn't necessary - pkg/cmd/pulumi/policy_new.go: long line because of error message - pkg/backend/snapshot_test.go: long line trying to assign three variables in the same assignment I have included mention of gofumpt in the CONTRIBUTING.md.
2023-03-03 16:36:39 +00:00
info plugin.ProgInfo, transitiveDependencies bool,
) ([]plugin.DependencyInfo, error) {
Lifecycle tests shouldn't use a closed host (#14063) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> This PR fixes the inadvertent use of a closed plugin host in the lifecycle tests. The tests override the host that is provided to the engine, for good reasons, but that same host is re-used across multiple engine operations. Since the engine closes the supplied host at the end of each operation, subsequent operations are handed a closed host. In order to detect engine bugs related to the use of a closed host (see https://github.com/pulumi/pulumi/pull/14057), the fake host should return an error if it is used after being closed (as does the real host). This PR addresses this. The detailed change is to shift to using a host factory that produces a host in `TestOp.Run`. The `TestPlan` now takes a `TestUpdateOptions` with `HostF` and an embedded `UpdateOptions`. Note that two tests fail due to https://github.com/pulumi/pulumi/pull/14057 which was being masked by the problem that is fixed here. This PR disables those tests and the other PR will re-enable them. - `TestCanceledRefresh` - `TestProviderCancellation` ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [x] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-09-28 21:50:18 +00:00
if p.closed {
return nil, ErrLanguageRuntimeIsClosed
}
return nil, nil
}
func (p *languageRuntime) RunPlugin(info plugin.RunPluginInfo) (io.Reader, io.Reader, context.CancelFunc, error) {
Enable perfsprint linter (#14813) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> Prompted by a comment in another review: https://github.com/pulumi/pulumi/pull/14654#discussion_r1419995945 This lints that we don't use `fmt.Errorf` when `errors.New` will suffice, it also covers a load of other cases where `Sprintf` is sub-optimal. Most of these edits were made by running `perfsprint --fix`. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [ ] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-12-12 12:19:42 +00:00
return nil, nil, nil, errors.New("inline plugins are not currently supported")
}
func (p *languageRuntime) GenerateProject(string, string, string,
bool, string, map[string]string,
) (hcl.Diagnostics, error) {
Enable perfsprint linter (#14813) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> Prompted by a comment in another review: https://github.com/pulumi/pulumi/pull/14654#discussion_r1419995945 This lints that we don't use `fmt.Errorf` when `errors.New` will suffice, it also covers a load of other cases where `Sprintf` is sub-optimal. Most of these edits were made by running `perfsprint --fix`. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [ ] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-12-12 12:19:42 +00:00
return nil, errors.New("GenerateProject is not supported")
}
Return diagnostics from GeneratePackage (#14661) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> Fixes https://github.com/pulumi/pulumi/issues/14660. Fairly simple change to bring the GeneratePackage RPC method into alignment with the other codegen methods and use returned diagnostics rather than just error values. `gen-sdk` is updated to print those diagnostics, and the python/node/go runtimes updated to return the diagnostics from schema binding as diagnostics rather than just an error value. Might be worth at some point seeing if the rest of package generation could use diagnostics rather than error values, but that's a larger lift. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [ ] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [x] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-12-05 17:47:52 +00:00
func (p *languageRuntime) GeneratePackage(string, string, map[string][]byte, string) (hcl.Diagnostics, error) {
Enable perfsprint linter (#14813) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> Prompted by a comment in another review: https://github.com/pulumi/pulumi/pull/14654#discussion_r1419995945 This lints that we don't use `fmt.Errorf` when `errors.New` will suffice, it also covers a load of other cases where `Sprintf` is sub-optimal. Most of these edits were made by running `perfsprint --fix`. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [ ] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-12-12 12:19:42 +00:00
return nil, errors.New("GeneratePackage is not supported")
}
func (p *languageRuntime) GenerateProgram(map[string]string, string) (map[string][]byte, hcl.Diagnostics, error) {
Enable perfsprint linter (#14813) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> Prompted by a comment in another review: https://github.com/pulumi/pulumi/pull/14654#discussion_r1419995945 This lints that we don't use `fmt.Errorf` when `errors.New` will suffice, it also covers a load of other cases where `Sprintf` is sub-optimal. Most of these edits were made by running `perfsprint --fix`. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [ ] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-12-12 12:19:42 +00:00
return nil, nil, errors.New("GenerateProgram is not supported")
}
func (p *languageRuntime) Pack(string, semver.Version, string) (string, error) {
Enable perfsprint linter (#14813) <!--- Thanks so much for your contribution! If this is your first time contributing, please ensure that you have read the [CONTRIBUTING](https://github.com/pulumi/pulumi/blob/master/CONTRIBUTING.md) documentation. --> # Description <!--- Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. --> Prompted by a comment in another review: https://github.com/pulumi/pulumi/pull/14654#discussion_r1419995945 This lints that we don't use `fmt.Errorf` when `errors.New` will suffice, it also covers a load of other cases where `Sprintf` is sub-optimal. Most of these edits were made by running `perfsprint --fix`. ## Checklist - [x] I have run `make tidy` to update any new dependencies - [x] I have run `make lint` to verify my code passes the lint check - [x] I have formatted my code using `gofumpt` <!--- Please provide details if the checkbox below is to be left unchecked. --> - [ ] I have added tests that prove my fix is effective or that my feature works <!--- User-facing changes require a CHANGELOG entry. --> - [ ] I have run `make changelog` and committed the `changelog/pending/<file>` documenting my change <!-- If the change(s) in this PR is a modification of an existing call to the Pulumi Cloud, then the service should honor older versions of the CLI where this change would not exist. You must then bump the API version in /pkg/backend/httpstate/client/api.go, as well as add it to the service. --> - [ ] Yes, there are changes in this PR that warrants bumping the Pulumi Cloud API version <!-- @Pulumi employees: If yes, you must submit corresponding changes in the service repo. -->
2023-12-12 12:19:42 +00:00
return "", errors.New("Pack is not supported")
}