pulumi/pkg/codegen/pcl/rewrite_apply.go

661 lines
21 KiB
Go
Raw Permalink Normal View History

// Copyright 2016-2020, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pcl
import (
"fmt"
"github.com/gedex/inflector"
"github.com/hashicorp/hcl/v2"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
)
type NameInfo interface {
Format(name string) string
}
// The applyRewriter is responsible for driving the apply rewrite process. The rewriter uses a stack of contexts to
// deal with the possibility of expressions that observe outputs nested inside expressions that do not.
type applyRewriter struct {
nameInfo NameInfo
applyPromises bool
activeContext applyRewriteContext
exprStack []model.Expression
}
type applyRewriteContext interface {
PreVisit(x model.Expression) (model.Expression, hcl.Diagnostics)
PostVisit(x model.Expression) (model.Expression, hcl.Diagnostics)
}
// An inspectContext is used when we are inside an expression that does not observe eventual values. When it
// encounters an expression that observes eventual values, it pushes a new observeContext onto the stack.
type inspectContext struct {
*applyRewriter
parent *observeContext
root model.Expression
}
// An observeContext is used when we are inside an expression that does observe eventual values. It is responsible for
// finding the values that are observed, replacing them with references to apply parameters, and replacing the root
// expression with a call to the __apply intrinsic.
type observeContext struct {
*applyRewriter
parent applyRewriteContext
root model.Expression
applyArgs []model.Expression
callbackParams []*model.Variable
paramReferences []*model.ScopeTraversalExpression
assignedNames codegen.StringSet
nameCounts map[string]int
}
func HasEventualTypes(t model.Type) bool {
resolved := model.ResolveOutputs(t)
return resolved != t
}
func (r *applyRewriter) hasEventualTypes(t model.Type) bool {
return HasEventualTypes(t)
}
func (r *applyRewriter) hasEventualValues(x model.Expression) bool {
return r.hasEventualTypes(x.Type())
}
func (r *applyRewriter) isEventualType(t model.Type) (model.Type, bool) {
switch t := t.(type) {
case *model.OutputType:
return t.ElementType, true
case *model.PromiseType:
if r.applyPromises {
return t.ElementType, true
}
case *model.UnionType:
types, isEventual := make([]model.Type, len(t.ElementTypes)), false
for i, t := range t.ElementTypes {
if element, elementIsEventual := r.isEventualType(t); elementIsEventual {
t, isEventual = element, true
}
types[i] = t
}
if isEventual {
return model.NewUnionType(types...), true
}
}
return nil, false
}
func (r *applyRewriter) hasEventualElements(x model.Expression) bool {
t := x.Type()
if resolved, ok := r.isEventualType(t); ok {
t = resolved
}
return r.hasEventualTypes(t)
}
func (r *applyRewriter) isPromptArg(paramType model.Type, arg model.Expression) bool {
if !r.hasEventualValues(arg) {
return true
}
if union, ok := paramType.(*model.UnionType); ok {
for _, t := range union.ElementTypes {
if t != model.DynamicType && t.ConversionFrom(arg.Type()) != model.NoConversion {
return true
}
}
return false
}
return paramType != model.DynamicType && paramType.ConversionFrom(arg.Type()) != model.NoConversion
}
func (r *applyRewriter) isIteratorExpr(x model.Expression) (bool, model.Type) {
if len(r.exprStack) < 2 {
return false, nil
}
parent := r.exprStack[len(r.exprStack)-2]
switch parent := parent.(type) {
case *model.ForExpression:
return x != parent.Collection, parent.ValueVariable.Type()
case *model.SplatExpression:
return x != parent.Source, parent.Item.Type()
default:
return false, nil
}
}
func (r *applyRewriter) inspectsEventualValues(x model.Expression) bool {
switch x := x.(type) {
case *model.ConditionalExpression:
return r.hasEventualValues(x.TrueResult) || r.hasEventualValues(x.FalseResult)
case *model.ForExpression:
return r.hasEventualElements(x.Collection)
case *model.FunctionCallExpression:
_, isEventual := r.isEventualType(x.Signature.ReturnType)
if isEventual {
return true
}
for i, arg := range x.Args {
if r.hasEventualValues(arg) && r.isPromptArg(x.Signature.Parameters[i].Type, arg) {
return true
}
}
return false
case *model.IndexExpression:
_, isCollectionEventual := r.isEventualType(x.Collection.Type())
return !isCollectionEventual && r.hasEventualValues(x.Collection)
case *model.SplatExpression:
return r.hasEventualElements(x.Source)
default:
if isIteratorExpr, elementType := r.isIteratorExpr(x); isIteratorExpr {
_, isElementEventual := r.isEventualType(elementType)
return !isElementEventual && r.hasEventualTypes(elementType)
}
return false
}
}
func (r *applyRewriter) observesEventualValues(x model.Expression) bool {
_, isEventual := r.isEventualType(x.Type())
if !isEventual {
return false
}
switch x := x.(type) {
case *model.AnonymousFunctionExpression:
return false
case *model.ConditionalExpression:
return r.hasEventualValues(x.Condition)
case *model.ForExpression:
_, collectionIsEventual := r.isEventualType(x.Collection.Type())
return collectionIsEventual
case *model.FunctionCallExpression:
for i, arg := range x.Args {
if !r.isPromptArg(x.Signature.Parameters[i].Type, arg) {
return true
}
}
return false
case *model.IndexExpression:
if _, collectionIsEventual := r.isEventualType(x.Collection.Type()); collectionIsEventual {
return true
}
return r.hasEventualValues(x.Key)
case *model.RelativeTraversalExpression:
// A traversal is eventual if at least one of its nonterminals is eventual.
for _, p := range x.Parts[:len(x.Parts)-1] {
if _, isEventual := r.isEventualType(model.GetTraversableType(p)); isEventual {
return true
}
}
return false
case *model.ScopeTraversalExpression:
// A traversal is eventual if at least one of its nonterminals is eventual.
for _, p := range x.Parts[:len(x.Parts)-1] {
if _, isEventual := r.isEventualType(model.GetTraversableType(p)); isEventual {
return true
}
}
return false
case *model.SplatExpression:
_, sourceIsEventual := r.isEventualType(x.Source.Type())
return sourceIsEventual
default:
return true
}
}
func (r *applyRewriter) preVisit(expr model.Expression) (model.Expression, hcl.Diagnostics) {
r.exprStack = append(r.exprStack, expr)
return r.activeContext.PreVisit(expr)
}
func (r *applyRewriter) postVisit(expr model.Expression) (model.Expression, hcl.Diagnostics) {
x, diags := r.activeContext.PostVisit(expr)
r.exprStack = r.exprStack[:len(r.exprStack)-1]
return x, diags
}
// disambiguateName ensures that the given name is unambiguous by appending an integer starting with 1 if necessary.
func (ctx *observeContext) disambiguateName(name string) string {
if name == "" {
name = "arg"
}
if !ctx.assignedNames.Has(name) {
return name
}
root := name
for i := 1; ctx.nameCounts[name] != 0; i++ {
name = fmt.Sprintf("%s%d", root, i)
}
return name
}
func (ctx *observeContext) bestTraversalName(rootName string, traversal hcl.Traversal) string {
for i := len(traversal) - 1; i >= 0; i-- {
switch t := traversal[i].(type) {
case hcl.TraverseAttr:
return t.Name
case hcl.TraverseIndex:
if t.Key.Type().Equals(cty.String) {
return t.Key.AsString()
}
return inflector.Singularize(ctx.bestTraversalName(rootName, traversal[:i]))
}
}
return rootName
}
// bestArgName computes the "best" name for a given apply argument. If this name is unambiguous after all best names
// have been calculated, it will be assigned to the argument. Otherwise, it will go through the disambiguation process
// in disambiguateArgName.
func (ctx *observeContext) bestArgName(x model.Expression) string {
switch x := x.(type) {
case *model.ForExpression:
if x.Key == nil {
return inflector.Pluralize(ctx.bestArgName(x.Value))
}
case *model.FunctionCallExpression:
switch x.Name {
case IntrinsicApply:
_, then := ParseApplyCall(x)
return ctx.bestArgName(then.Body)
case "element":
return ctx.bestArgName(x.Args[0])
case "fileArchive", "remoteArchive", "assetArchive",
"fileAsset", "stringAsset", "remoteAsset",
"readDir", "readFile":
return ctx.bestArgName(x.Args[0])
case "lookup":
return ctx.bestArgName(x.Args[1])
}
return x.Name
case *model.IndexExpression:
switch model.ResolveOutputs(x.Collection.Type()).(type) {
case *model.ListType, *model.SetType, *model.TupleType:
return inflector.Singularize(ctx.bestArgName(x.Collection))
case *model.MapType, *model.ObjectType:
return ctx.bestArgName(x.Key)
}
case *model.LiteralValueExpression:
if x.Value.Type().Equals(cty.String) {
return x.Value.AsString()
}
case *model.RelativeTraversalExpression:
if n := ctx.bestTraversalName(ctx.bestArgName(x.Source), x.Traversal); n != "" {
return n
}
case *model.ScopeTraversalExpression:
if n := ctx.bestTraversalName(x.RootName, x.Traversal[1:]); n != "" {
return n
}
case *model.SplatExpression:
return inflector.Pluralize(ctx.bestArgName(x.Each))
}
switch t := model.ResolveOutputs(x.Type()).(type) {
case *model.ListType, *model.SetType, *model.TupleType:
return "values"
case *model.MapType, *model.ObjectType:
return "obj"
case *model.UnionType:
return "value"
default:
switch t {
case model.BoolType:
return "b"
case model.IntType:
return "i"
case model.NumberType:
return "n"
case model.StringType:
return "s"
case model.DynamicType:
return "obj"
default:
return "v"
}
}
}
// disambiguateArgName applies type-specific disambiguation to an argument name.
func (ctx *observeContext) disambiguateArgName(x model.Expression, bestName string) string {
if x, ok := x.(*model.ScopeTraversalExpression); ok {
if n, ok := x.Parts[0].(*Resource); ok {
// If dealing with a broken access, defer to the generic disambiguator. Otherwise, attempt to disambiguate
// by prepending the resource's variable name.
if len(x.Traversal) > 1 {
return ctx.disambiguateName(n.Name() + titleCase(bestName))
}
}
}
// Hand off to the generic disambiguator.
return ctx.disambiguateName(bestName)
}
// rewriteApplyArg replaces a single expression with an apply parameter.
func (ctx *observeContext) rewriteApplyArg(applyArg model.Expression, paramType model.Type, traversal hcl.Traversal,
all: Reformat with gofumpt Per team discussion, switching to gofumpt. [gofumpt][1] is an alternative, stricter alternative to gofmt. It addresses other stylistic concerns that gofmt doesn't yet cover. [1]: https://github.com/mvdan/gofumpt See the full list of [Added rules][2], but it includes: - Dropping empty lines around function bodies - Dropping unnecessary variable grouping when there's only one variable - Ensuring an empty line between multi-line functions - simplification (`-s` in gofmt) is always enabled - Ensuring multi-line function signatures end with `) {` on a separate line. [2]: https://github.com/mvdan/gofumpt#Added-rules gofumpt is stricter, but there's no lock-in. All gofumpt output is valid gofmt output, so if we decide we don't like it, it's easy to switch back without any code changes. gofumpt support is built into the tooling we use for development so this won't change development workflows. - golangci-lint includes a gofumpt check (enabled in this PR) - gopls, the LSP for Go, includes a gofumpt option (see [installation instrutions][3]) [3]: https://github.com/mvdan/gofumpt#installation This change was generated by running: ```bash gofumpt -w $(rg --files -g '*.go' | rg -v testdata | rg -v compilation_error) ``` The following files were manually tweaked afterwards: - pkg/cmd/pulumi/stack_change_secrets_provider.go: one of the lines overflowed and had comments in an inconvenient place - pkg/cmd/pulumi/destroy.go: `var x T = y` where `T` wasn't necessary - pkg/cmd/pulumi/policy_new.go: long line because of error message - pkg/backend/snapshot_test.go: long line trying to assign three variables in the same assignment I have included mention of gofumpt in the CONTRIBUTING.md.
2023-03-03 16:36:39 +00:00
parts []model.Traversable, isRoot bool,
) model.Expression {
if len(traversal) == 0 && isRoot {
return applyArg
}
callbackParam := &model.Variable{
Name: fmt.Sprintf("<arg%d>", len(ctx.callbackParams)),
VariableType: paramType,
}
ctx.applyArgs, ctx.callbackParams = append(ctx.applyArgs, applyArg), append(ctx.callbackParams, callbackParam)
// TODO(pdg): this risks information loss for nested output-typed properties... The `Types` array on traversals
// ought to store the original types.
resolvedParts := make([]model.Traversable, len(parts)+1)
resolvedParts[0] = callbackParam
for i, p := range parts {
resolvedParts[i+1] = model.ResolveOutputs(model.GetTraversableType(p))
}
result := &model.ScopeTraversalExpression{
Parts: resolvedParts,
RootName: callbackParam.Name,
Traversal: hcl.TraversalJoin(hcl.Traversal{hcl.TraverseRoot{Name: callbackParam.Name}}, traversal),
}
ctx.paramReferences = append(ctx.paramReferences, result)
return result
}
// rewriteRelativeTraversalExpression replaces a single access to an ouptut-typed RelativeTraversalExpression with an
// apply parameter.
func (ctx *observeContext) rewriteRelativeTraversalExpression(expr *model.RelativeTraversalExpression,
all: Reformat with gofumpt Per team discussion, switching to gofumpt. [gofumpt][1] is an alternative, stricter alternative to gofmt. It addresses other stylistic concerns that gofmt doesn't yet cover. [1]: https://github.com/mvdan/gofumpt See the full list of [Added rules][2], but it includes: - Dropping empty lines around function bodies - Dropping unnecessary variable grouping when there's only one variable - Ensuring an empty line between multi-line functions - simplification (`-s` in gofmt) is always enabled - Ensuring multi-line function signatures end with `) {` on a separate line. [2]: https://github.com/mvdan/gofumpt#Added-rules gofumpt is stricter, but there's no lock-in. All gofumpt output is valid gofmt output, so if we decide we don't like it, it's easy to switch back without any code changes. gofumpt support is built into the tooling we use for development so this won't change development workflows. - golangci-lint includes a gofumpt check (enabled in this PR) - gopls, the LSP for Go, includes a gofumpt option (see [installation instrutions][3]) [3]: https://github.com/mvdan/gofumpt#installation This change was generated by running: ```bash gofumpt -w $(rg --files -g '*.go' | rg -v testdata | rg -v compilation_error) ``` The following files were manually tweaked afterwards: - pkg/cmd/pulumi/stack_change_secrets_provider.go: one of the lines overflowed and had comments in an inconvenient place - pkg/cmd/pulumi/destroy.go: `var x T = y` where `T` wasn't necessary - pkg/cmd/pulumi/policy_new.go: long line because of error message - pkg/backend/snapshot_test.go: long line trying to assign three variables in the same assignment I have included mention of gofumpt in the CONTRIBUTING.md.
2023-03-03 16:36:39 +00:00
isRoot bool,
) model.Expression {
// If the access is not an output() or a promise(), return the node as-is.
paramType, isEventual := ctx.isEventualType(expr.Type())
if !isEventual {
return expr
}
// If the receiver is an eventual type, we're done.
if receiverResolvedType, isEventual := ctx.isEventualType(model.GetTraversableType(expr.Parts[0])); isEventual {
return ctx.rewriteApplyArg(expr.Source, receiverResolvedType, expr.Traversal, expr.Parts[1:], isRoot)
}
// Compute the type of the apply and callback arguments.
parts, traversal := expr.Parts, expr.Traversal
for i := range expr.Traversal {
partResolvedType, isEventual := paramType, true
if i < len(expr.Traversal)-1 {
partResolvedType, isEventual = ctx.isEventualType(model.GetTraversableType(expr.Parts[i+1]))
}
if isEventual {
expr.Traversal, expr.Parts = expr.Traversal[:i+1], expr.Parts[:i+1]
paramType, traversal, parts = partResolvedType, expr.Traversal[i+1:], expr.Parts[i+1:]
break
}
}
return ctx.rewriteApplyArg(expr, paramType, traversal, parts, isRoot)
}
// rewriteScopeTraversalExpression replaces a single access to an ouptut-typed ScopeTraversalExpression with an apply
// parameter.
func (ctx *observeContext) rewriteScopeTraversalExpression(expr *model.ScopeTraversalExpression,
all: Reformat with gofumpt Per team discussion, switching to gofumpt. [gofumpt][1] is an alternative, stricter alternative to gofmt. It addresses other stylistic concerns that gofmt doesn't yet cover. [1]: https://github.com/mvdan/gofumpt See the full list of [Added rules][2], but it includes: - Dropping empty lines around function bodies - Dropping unnecessary variable grouping when there's only one variable - Ensuring an empty line between multi-line functions - simplification (`-s` in gofmt) is always enabled - Ensuring multi-line function signatures end with `) {` on a separate line. [2]: https://github.com/mvdan/gofumpt#Added-rules gofumpt is stricter, but there's no lock-in. All gofumpt output is valid gofmt output, so if we decide we don't like it, it's easy to switch back without any code changes. gofumpt support is built into the tooling we use for development so this won't change development workflows. - golangci-lint includes a gofumpt check (enabled in this PR) - gopls, the LSP for Go, includes a gofumpt option (see [installation instrutions][3]) [3]: https://github.com/mvdan/gofumpt#installation This change was generated by running: ```bash gofumpt -w $(rg --files -g '*.go' | rg -v testdata | rg -v compilation_error) ``` The following files were manually tweaked afterwards: - pkg/cmd/pulumi/stack_change_secrets_provider.go: one of the lines overflowed and had comments in an inconvenient place - pkg/cmd/pulumi/destroy.go: `var x T = y` where `T` wasn't necessary - pkg/cmd/pulumi/policy_new.go: long line because of error message - pkg/backend/snapshot_test.go: long line trying to assign three variables in the same assignment I have included mention of gofumpt in the CONTRIBUTING.md.
2023-03-03 16:36:39 +00:00
isRoot bool,
) model.Expression {
// If the access is not an output() or a promise(), return the node as-is.
resolvedType, isEventual := ctx.isEventualType(expr.Type())
if !isEventual {
// If this is a reference to a named variable, put the name in scope.
if definition, ok := expr.Traversal[0].(Node); ok {
ctx.assignedNames.Add(definition.Name())
ctx.nameCounts[definition.Name()] = 1
}
return expr
}
// Otherwise, append the access to the list of apply arguments and return an appropriate call to __applyArg.
//
// TODO: deduplicate multiple accesses to the same variable and field.
// Compute the type of the apply and callback arguments.
var applyArg *model.ScopeTraversalExpression
var paramType model.Type
var parts []model.Traversable
var traversal hcl.Traversal
splitTraversal := expr.Traversal.SimpleSplit()
rootResolvedType, rootIsEventual := resolvedType, true
if len(splitTraversal.Rel) > 0 {
rootResolvedType, rootIsEventual = ctx.isEventualType(model.GetTraversableType(expr.Parts[0]))
}
if rootIsEventual {
applyArg = &model.ScopeTraversalExpression{
Parts: expr.Parts[:1],
RootName: splitTraversal.Abs.RootName(),
Traversal: splitTraversal.Abs,
}
paramType, traversal, parts = rootResolvedType, expr.Traversal.SimpleSplit().Rel, expr.Parts[1:]
} else {
for i := range splitTraversal.Rel {
partResolvedType, isEventual := resolvedType, true
if i < len(splitTraversal.Rel)-1 {
partResolvedType, isEventual = ctx.isEventualType(model.GetTraversableType(expr.Parts[i+1]))
}
if isEventual {
absTraversal, relTraversal := expr.Traversal[:i+2], expr.Traversal[i+2:]
applyArg = &model.ScopeTraversalExpression{
Parts: expr.Parts[:i+2],
RootName: absTraversal.RootName(),
Traversal: absTraversal,
}
paramType, traversal, parts = partResolvedType, relTraversal, expr.Parts[i+2:]
break
}
}
}
return ctx.rewriteApplyArg(applyArg, paramType, traversal, parts, isRoot)
}
// rewriteRoot replaces the root node in a bound expression with a call to the __apply intrinsic if necessary.
func (ctx *observeContext) rewriteRoot(expr model.Expression) model.Expression {
contract.Requiref(expr == ctx.root, "expr", "must be root expression")
if len(ctx.applyArgs) == 0 {
return expr
}
// Assign argument names.
for i, arg := range ctx.applyArgs {
bestName := ctx.nameInfo.Format(ctx.bestArgName(arg))
ctx.callbackParams[i].Name, ctx.nameCounts[bestName] = bestName, ctx.nameCounts[bestName]+1
}
for i, param := range ctx.callbackParams {
if ctx.nameCounts[param.Name] > 1 {
param.Name = ctx.disambiguateArgName(ctx.applyArgs[i], param.Name)
if ctx.nameCounts[param.Name] == 0 {
ctx.nameCounts[param.Name] = 1
}
ctx.assignedNames.Add(param.Name)
}
}
// Update parameter references with the assigned names.
for _, x := range ctx.paramReferences {
v := x.Parts[0].(*model.Variable)
rootTraversal := x.Traversal[0].(hcl.TraverseRoot)
x.RootName, rootTraversal.Name = v.Name, v.Name
x.Traversal[0] = rootTraversal
}
// Create a new anonymous function definition.
callback := &model.AnonymousFunctionExpression{
Signature: model.StaticFunctionSignature{
Parameters: make([]model.Parameter, len(ctx.callbackParams)),
ReturnType: expr.Type(),
},
Parameters: ctx.callbackParams,
Body: expr,
}
for i, p := range ctx.callbackParams {
callback.Signature.Parameters[i] = model.Parameter{Name: p.Name, Type: p.VariableType}
}
return NewApplyCall(ctx.applyArgs, callback)
}
func (ctx *observeContext) PreVisit(expr model.Expression) (model.Expression, hcl.Diagnostics) {
if ctx.inspectsEventualValues(expr) {
if ctx.observesEventualValues(expr) {
ctx.activeContext = &observeContext{
applyRewriter: ctx.applyRewriter,
parent: ctx,
root: expr,
assignedNames: codegen.StringSet{},
nameCounts: map[string]int{},
}
} else {
ctx.activeContext = &inspectContext{
applyRewriter: ctx.applyRewriter,
parent: ctx,
root: expr,
}
}
}
return expr, nil
}
func (ctx *observeContext) PostVisit(expr model.Expression) (model.Expression, hcl.Diagnostics) {
isRoot := expr == ctx.root
// TODO(pdg): arrays of outputs, for expressions, etc.
diagnostics := expr.Typecheck(false)
contract.Assertf(len(diagnostics) == 0, "error typechecking expression: %v", diagnostics)
if isIteratorExpr, _ := ctx.isIteratorExpr(expr); isIteratorExpr {
return expr, nil
}
switch x := expr.(type) {
case *model.RelativeTraversalExpression:
expr = ctx.rewriteRelativeTraversalExpression(x, isRoot)
case *model.ScopeTraversalExpression:
expr = ctx.rewriteScopeTraversalExpression(x, isRoot)
default:
_, isEventual := ctx.isEventualType(expr.Type())
if isEventual && ctx.inspectsEventualValues(x) {
expr = ctx.rewriteApplyArg(x, model.ResolveOutputs(x.Type()), nil, nil, isRoot)
}
}
if isRoot {
ctx.root = expr
expr = ctx.rewriteRoot(expr)
ctx.activeContext = ctx.parent
return ctx.activeContext.PostVisit(expr)
}
return expr, nil
}
func (ctx *inspectContext) PreVisit(expr model.Expression) (model.Expression, hcl.Diagnostics) {
if ctx.observesEventualValues(expr) {
observeCtx := &observeContext{
applyRewriter: ctx.applyRewriter,
parent: ctx,
root: expr,
assignedNames: codegen.StringSet{},
nameCounts: map[string]int{},
}
ctx.activeContext = observeCtx
}
return expr, nil
}
func (ctx *inspectContext) PostVisit(expr model.Expression) (model.Expression, hcl.Diagnostics) {
if expr == ctx.root {
ctx.activeContext = ctx.parent
if ctx.parent != nil {
return ctx.activeContext.PostVisit(expr)
}
}
return expr, nil
}
// RewriteApplies transforms all expressions that observe the resolved values of outputs and promises into calls to the
// __apply intrinsic. Expressions that generate or inspect outputs or promises are passed as arguments to these calls,
// and are replaced by references to the corresponding parameter.
//
// As an example, assuming that resource.id is an output, this transforms the following expression:
//
2022-09-14 02:12:02 +00:00
// toJSON({
// Version = "2012-10-17"
// Statement = [{
// Effect = "Allow"
// Principal = "*"
// Action = [ "s3:GetObject" ]
// Resource = [ "arn:aws:s3:::${resource.id}/*" ]
// }]
// })
//
// into this expression:
//
2022-09-14 02:12:02 +00:00
// __apply(resource.id, eval(id, toJSON({
// Version = "2012-10-17"
// Statement = [{
// Effect = "Allow"
// Principal = "*"
// Action = [ "s3:GetObject" ]
// Resource = [ "arn:aws:s3:::${id}/*" ]
// }]
// })))
//
// Here is a more advanced example, assuming that resource is an object whose properties are all outputs, this
// expression:
//
2022-09-14 02:12:02 +00:00
// "v: ${resource[resource.id]}"
//
// is transformed into this expression:
//
2022-09-14 02:12:02 +00:00
// __apply(__apply(resource.id,eval(id, resource[id])),eval(id, "v: ${id}"))
//
// This form is amenable to code generation for targets that require that outputs are resolved before their values are
// accessible (e.g. Pulumi's JS/TS libraries).
func RewriteApplies(expr model.Expression, nameInfo NameInfo, applyPromises bool) (model.Expression, hcl.Diagnostics) {
applyRewriter := &applyRewriter{
nameInfo: nameInfo,
applyPromises: applyPromises,
}
applyRewriter.activeContext = &inspectContext{
applyRewriter: applyRewriter,
root: expr,
}
return model.VisitExpression(expr, applyRewriter.preVisit, applyRewriter.postVisit)
}