2018-05-22 19:43:36 +00:00
|
|
|
// Copyright 2016-2018, Pulumi Corporation.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
Begin resource modeling and planning
This change introduces a new package, pkg/resource, that will form
the foundation for actually performing deployment plans and applications.
It contains the following key abstractions:
* resource.Provider is a wrapper around the CRUD operations exposed by
underlying resource plugins. It will eventually defer to resource.Plugin,
which itself defers -- over an RPC interface -- to the actual plugin, one
per package exposing resources. The provider will also understand how to
load, cache, and overall manage the lifetime of each plugin.
* resource.Resource is the actual resource object. This is created from
the overall evaluation object graph, but is simplified. It contains only
serializable properties, for example. Inter-resource references are
translated into serializable monikers as part of creating the resource.
* resource.Moniker is a serializable string that uniquely identifies
a resource in the Mu system. This is in contrast to resource IDs, which
are generated by resource providers and generally opaque to the Mu
system. See marapongo/mu#69 for more information about monikers and some
of their challenges (namely, designing a stable algorithm).
* resource.Snapshot is a "snapshot" taken from a graph of resources. This
is a transitive closure of state representing one possible configuration
of a given environment. This is what plans are created from. Eventually,
two snapshots will be diffable, in order to perform incremental updates.
One way of thinking about this is that a snapshot of the old world's state
is advanced, one step at a time, until it reaches a desired snapshot of
the new world's state.
* resource.Plan is a plan for carrying out desired CRUD operations on a target
environment. Each plan consists of zero-to-many Steps, each of which has
a CRUD operation type, a resource target, and a next step. This is an
enumerator because it is possible the plan will evolve -- and introduce new
steps -- as it is carried out (hence, the Next() method). At the moment, this
is linearized; eventually, we want to make this more "graph-like" so that we
can exploit available parallelism within the dependencies.
There are tons of TODOs remaining. However, the `mu plan` command is functioning
with these new changes -- including colorization FTW -- so I'm landing it now.
This is part of marapongo/mu#38 and marapongo/mu#41.
2017-02-17 20:31:48 +00:00
|
|
|
|
Make more progress on the new deployment model
This change restructures a lot more pertaining to deployments, snapshots,
environments, and the like.
The most notable change is that the notion of a deploy.Source is introduced,
which splits the responsibility between the deploy.Plan -- which simply
understands how to compute and carry out deployment plans -- and the idea
of something that can produce new objects on-demand during deployment.
The primary such implementation is evalSource, which encapsulates an
interpreter and takes a package, args, and config map, and proceeds to run
the interpreter in a distinct goroutine. It synchronizes as needed to
poke and prod the interpreter along its path to create new resource objects.
There are two other sources, however. First, a nullSource, which simply
refuses to create new objects. This can be handy when writing isolated
tests but is also used to simulate the "empty" environment as necessary to
do a complete teardown of the target environment. Second, a fixedSource,
which takes a pre-computed array of objects, and hands those, in order, to
the planning engine; this is mostly useful as a testing technique.
Boatloads of code is now changed and updated in the various CLI commands.
This further chugs along towards pulumi/lumi#90. The end is in sight.
2017-06-10 18:50:47 +00:00
|
|
|
package deploy
|
Begin resource modeling and planning
This change introduces a new package, pkg/resource, that will form
the foundation for actually performing deployment plans and applications.
It contains the following key abstractions:
* resource.Provider is a wrapper around the CRUD operations exposed by
underlying resource plugins. It will eventually defer to resource.Plugin,
which itself defers -- over an RPC interface -- to the actual plugin, one
per package exposing resources. The provider will also understand how to
load, cache, and overall manage the lifetime of each plugin.
* resource.Resource is the actual resource object. This is created from
the overall evaluation object graph, but is simplified. It contains only
serializable properties, for example. Inter-resource references are
translated into serializable monikers as part of creating the resource.
* resource.Moniker is a serializable string that uniquely identifies
a resource in the Mu system. This is in contrast to resource IDs, which
are generated by resource providers and generally opaque to the Mu
system. See marapongo/mu#69 for more information about monikers and some
of their challenges (namely, designing a stable algorithm).
* resource.Snapshot is a "snapshot" taken from a graph of resources. This
is a transitive closure of state representing one possible configuration
of a given environment. This is what plans are created from. Eventually,
two snapshots will be diffable, in order to perform incremental updates.
One way of thinking about this is that a snapshot of the old world's state
is advanced, one step at a time, until it reaches a desired snapshot of
the new world's state.
* resource.Plan is a plan for carrying out desired CRUD operations on a target
environment. Each plan consists of zero-to-many Steps, each of which has
a CRUD operation type, a resource target, and a next step. This is an
enumerator because it is possible the plan will evolve -- and introduce new
steps -- as it is carried out (hence, the Next() method). At the moment, this
is linearized; eventually, we want to make this more "graph-like" so that we
can exploit available parallelism within the dependencies.
There are tons of TODOs remaining. However, the `mu plan` command is functioning
with these new changes -- including colorization FTW -- so I'm landing it now.
This is part of marapongo/mu#38 and marapongo/mu#41.
2017-02-17 20:31:48 +00:00
|
|
|
|
|
|
|
import (
|
2018-08-21 21:05:00 +00:00
|
|
|
"context"
|
2018-10-29 17:24:04 +00:00
|
|
|
"math"
|
2018-08-21 21:05:00 +00:00
|
|
|
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
"github.com/blang/semver"
|
|
|
|
"github.com/pkg/errors"
|
|
|
|
uuid "github.com/satori/go.uuid"
|
|
|
|
|
2017-09-22 02:18:21 +00:00
|
|
|
"github.com/pulumi/pulumi/pkg/diag"
|
|
|
|
"github.com/pulumi/pulumi/pkg/resource"
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
"github.com/pulumi/pulumi/pkg/resource/deploy/providers"
|
2018-05-23 21:43:17 +00:00
|
|
|
"github.com/pulumi/pulumi/pkg/resource/graph"
|
2017-09-22 02:18:21 +00:00
|
|
|
"github.com/pulumi/pulumi/pkg/resource/plugin"
|
|
|
|
"github.com/pulumi/pulumi/pkg/tokens"
|
|
|
|
"github.com/pulumi/pulumi/pkg/util/contract"
|
Begin resource modeling and planning
This change introduces a new package, pkg/resource, that will form
the foundation for actually performing deployment plans and applications.
It contains the following key abstractions:
* resource.Provider is a wrapper around the CRUD operations exposed by
underlying resource plugins. It will eventually defer to resource.Plugin,
which itself defers -- over an RPC interface -- to the actual plugin, one
per package exposing resources. The provider will also understand how to
load, cache, and overall manage the lifetime of each plugin.
* resource.Resource is the actual resource object. This is created from
the overall evaluation object graph, but is simplified. It contains only
serializable properties, for example. Inter-resource references are
translated into serializable monikers as part of creating the resource.
* resource.Moniker is a serializable string that uniquely identifies
a resource in the Mu system. This is in contrast to resource IDs, which
are generated by resource providers and generally opaque to the Mu
system. See marapongo/mu#69 for more information about monikers and some
of their challenges (namely, designing a stable algorithm).
* resource.Snapshot is a "snapshot" taken from a graph of resources. This
is a transitive closure of state representing one possible configuration
of a given environment. This is what plans are created from. Eventually,
two snapshots will be diffable, in order to perform incremental updates.
One way of thinking about this is that a snapshot of the old world's state
is advanced, one step at a time, until it reaches a desired snapshot of
the new world's state.
* resource.Plan is a plan for carrying out desired CRUD operations on a target
environment. Each plan consists of zero-to-many Steps, each of which has
a CRUD operation type, a resource target, and a next step. This is an
enumerator because it is possible the plan will evolve -- and introduce new
steps -- as it is carried out (hence, the Next() method). At the moment, this
is linearized; eventually, we want to make this more "graph-like" so that we
can exploit available parallelism within the dependencies.
There are tons of TODOs remaining. However, the `mu plan` command is functioning
with these new changes -- including colorization FTW -- so I'm landing it now.
This is part of marapongo/mu#38 and marapongo/mu#41.
2017-02-17 20:31:48 +00:00
|
|
|
)
|
|
|
|
|
2018-08-06 23:46:17 +00:00
|
|
|
// Options controls the planning and deployment process.
|
|
|
|
type Options struct {
|
2018-09-27 22:49:08 +00:00
|
|
|
Events Events // an optional events callback interface.
|
|
|
|
Parallel int // the degree of parallelism for resource operations (<=1 for serial).
|
|
|
|
Refresh bool // whether or not to refresh before executing the plan.
|
|
|
|
RefreshOnly bool // whether or not to exit after refreshing.
|
|
|
|
TrustDependencies bool // whether or not to trust the resource dependency graph.
|
2018-08-06 23:46:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// DegreeOfParallelism returns the degree of parallelism that should be used during the
|
|
|
|
// planning and deployment process.
|
|
|
|
func (o Options) DegreeOfParallelism() int {
|
|
|
|
if o.Parallel <= 1 {
|
|
|
|
return 1
|
|
|
|
}
|
|
|
|
return o.Parallel
|
|
|
|
}
|
|
|
|
|
2018-10-17 22:33:26 +00:00
|
|
|
// InfiniteParallelism returns whether or not the requested level of parallelism is unbounded.
|
|
|
|
func (o Options) InfiniteParallelism() bool {
|
2018-10-29 17:24:04 +00:00
|
|
|
return o.Parallel == math.MaxInt32
|
2018-10-17 22:33:26 +00:00
|
|
|
}
|
|
|
|
|
2018-08-06 23:46:17 +00:00
|
|
|
// Events is an interface that can be used to hook interesting engine/planning events.
|
|
|
|
type Events interface {
|
|
|
|
OnResourceStepPre(step Step) (interface{}, error)
|
|
|
|
OnResourceStepPost(ctx interface{}, step Step, status resource.Status, err error) error
|
|
|
|
OnResourceOutputs(step Step) error
|
|
|
|
}
|
|
|
|
|
Add a list of in-flight operations to the deployment (#1759)
* Add a list of in-flight operations to the deployment
This commit augments 'DeploymentV2' with a list of operations that are
currently in flight. This information is used by the engine to keep
track of whether or not a particular deployment is in a valid state.
The SnapshotManager is responsible for inserting and removing operations
from the in-flight operation list. When the engine registers an intent
to perform an operation, SnapshotManager inserts an Operation into this
list and saves it to the snapshot. When an operation completes, the
SnapshotManager removes it from the snapshot. From this, the engine can
infer that if it ever sees a deployment with pending operations, the
Pulumi CLI must have crashed or otherwise abnormally terminated before
seeing whether or not an operation completed successfully.
To remedy this state, this commit also adds code to 'pulumi stack
import' that clears all pending operations from a deployment, as well as
code to plan generation that will reject any deployments that have
pending operations present.
At the CLI level, if we see that we are in a state where pending
operations were in-flight when the engine died, we'll issue a
human-friendly error message that indicates which resources are in a bad
state and how to recover their stack.
* CR: Multi-line string literals, renaming in-flight -> pending
* CR: Add enum to apitype for operation type, also name status -> type for clarity
* Fix the yaml type
* Fix missed renames
* Add implementation for lifecycle_test.go
* Rebase against master
2018-08-11 04:39:59 +00:00
|
|
|
// PlanPendingOperationsError is an error returned from `NewPlan` if there exist pending operations in the
|
|
|
|
// snapshot that we are preparing to operate upon. The engine does not allow any operations to be pending
|
|
|
|
// when operating on a snapshot.
|
|
|
|
type PlanPendingOperationsError struct {
|
|
|
|
Operations []resource.Operation
|
|
|
|
}
|
|
|
|
|
|
|
|
func (p PlanPendingOperationsError) Error() string {
|
|
|
|
return "one or more operations are currently pending"
|
|
|
|
}
|
|
|
|
|
Begin resource modeling and planning
This change introduces a new package, pkg/resource, that will form
the foundation for actually performing deployment plans and applications.
It contains the following key abstractions:
* resource.Provider is a wrapper around the CRUD operations exposed by
underlying resource plugins. It will eventually defer to resource.Plugin,
which itself defers -- over an RPC interface -- to the actual plugin, one
per package exposing resources. The provider will also understand how to
load, cache, and overall manage the lifetime of each plugin.
* resource.Resource is the actual resource object. This is created from
the overall evaluation object graph, but is simplified. It contains only
serializable properties, for example. Inter-resource references are
translated into serializable monikers as part of creating the resource.
* resource.Moniker is a serializable string that uniquely identifies
a resource in the Mu system. This is in contrast to resource IDs, which
are generated by resource providers and generally opaque to the Mu
system. See marapongo/mu#69 for more information about monikers and some
of their challenges (namely, designing a stable algorithm).
* resource.Snapshot is a "snapshot" taken from a graph of resources. This
is a transitive closure of state representing one possible configuration
of a given environment. This is what plans are created from. Eventually,
two snapshots will be diffable, in order to perform incremental updates.
One way of thinking about this is that a snapshot of the old world's state
is advanced, one step at a time, until it reaches a desired snapshot of
the new world's state.
* resource.Plan is a plan for carrying out desired CRUD operations on a target
environment. Each plan consists of zero-to-many Steps, each of which has
a CRUD operation type, a resource target, and a next step. This is an
enumerator because it is possible the plan will evolve -- and introduce new
steps -- as it is carried out (hence, the Next() method). At the moment, this
is linearized; eventually, we want to make this more "graph-like" so that we
can exploit available parallelism within the dependencies.
There are tons of TODOs remaining. However, the `mu plan` command is functioning
with these new changes -- including colorization FTW -- so I'm landing it now.
This is part of marapongo/mu#38 and marapongo/mu#41.
2017-02-17 20:31:48 +00:00
|
|
|
// Plan is the output of analyzing resource graphs and contains the steps necessary to perform an infrastructure
|
|
|
|
// deployment. A plan can be generated out of whole cloth from a resource graph -- in the case of new deployments --
|
|
|
|
// however, it can alternatively be generated by diffing two resource graphs -- in the case of updates to existing
|
2017-10-16 19:04:35 +00:00
|
|
|
// stacks (presumably more common). The plan contains step objects that can be used to drive a deployment.
|
2017-06-10 01:34:37 +00:00
|
|
|
type Plan struct {
|
Make more progress on the new deployment model
This change restructures a lot more pertaining to deployments, snapshots,
environments, and the like.
The most notable change is that the notion of a deploy.Source is introduced,
which splits the responsibility between the deploy.Plan -- which simply
understands how to compute and carry out deployment plans -- and the idea
of something that can produce new objects on-demand during deployment.
The primary such implementation is evalSource, which encapsulates an
interpreter and takes a package, args, and config map, and proceeds to run
the interpreter in a distinct goroutine. It synchronizes as needed to
poke and prod the interpreter along its path to create new resource objects.
There are two other sources, however. First, a nullSource, which simply
refuses to create new objects. This can be handy when writing isolated
tests but is also used to simulate the "empty" environment as necessary to
do a complete teardown of the target environment. Second, a fixedSource,
which takes a pre-computed array of objects, and hands those, in order, to
the planning engine; this is mostly useful as a testing technique.
Boatloads of code is now changed and updated in the various CLI commands.
This further chugs along towards pulumi/lumi#90. The end is in sight.
2017-06-10 18:50:47 +00:00
|
|
|
ctx *plugin.Context // the plugin context (for provider operations).
|
2017-06-11 00:03:58 +00:00
|
|
|
target *Target // the deployment target.
|
Make more progress on the new deployment model
This change restructures a lot more pertaining to deployments, snapshots,
environments, and the like.
The most notable change is that the notion of a deploy.Source is introduced,
which splits the responsibility between the deploy.Plan -- which simply
understands how to compute and carry out deployment plans -- and the idea
of something that can produce new objects on-demand during deployment.
The primary such implementation is evalSource, which encapsulates an
interpreter and takes a package, args, and config map, and proceeds to run
the interpreter in a distinct goroutine. It synchronizes as needed to
poke and prod the interpreter along its path to create new resource objects.
There are two other sources, however. First, a nullSource, which simply
refuses to create new objects. This can be handy when writing isolated
tests but is also used to simulate the "empty" environment as necessary to
do a complete teardown of the target environment. Second, a fixedSource,
which takes a pre-computed array of objects, and hands those, in order, to
the planning engine; this is mostly useful as a testing technique.
Boatloads of code is now changed and updated in the various CLI commands.
This further chugs along towards pulumi/lumi#90. The end is in sight.
2017-06-10 18:50:47 +00:00
|
|
|
prev *Snapshot // the old resource snapshot for comparison.
|
2017-06-10 01:34:37 +00:00
|
|
|
olds map[resource.URN]*resource.State // a map of all old resources.
|
2017-08-30 01:24:12 +00:00
|
|
|
source Source // the source of new resources.
|
2017-06-10 01:34:37 +00:00
|
|
|
analyzers []tokens.QName // the analyzers to run during this plan's generation.
|
2018-01-10 02:40:08 +00:00
|
|
|
preview bool // true if this plan is to be previewed rather than applied.
|
2018-05-23 21:43:17 +00:00
|
|
|
depGraph *graph.DependencyGraph // the dependency graph of the old snapshot
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
providers *providers.Registry // the provider registry for this plan.
|
|
|
|
}
|
|
|
|
|
|
|
|
// addDefaultProviders adds any necessary default provider definitions and references to the given snapshot. Version
|
|
|
|
// information for these providers is sourced from the snapshot's manifest; inputs parameters are sourced from the
|
|
|
|
// stack's configuration.
|
|
|
|
func addDefaultProviders(target *Target, source Source, prev *Snapshot) error {
|
|
|
|
if prev == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pull the versions we'll use for default providers from the snapshot's manifest.
|
|
|
|
defaultProviderVersions := make(map[tokens.Package]*semver.Version)
|
|
|
|
for _, p := range prev.Manifest.Plugins {
|
|
|
|
defaultProviderVersions[tokens.Package(p.Name)] = p.Version
|
|
|
|
}
|
|
|
|
|
|
|
|
// Determine the necessary set of default providers and inject references to default providers as appropriate.
|
|
|
|
//
|
|
|
|
// We do this by scraping the snapshot for custom resources that does not reference a provider and adding
|
|
|
|
// default providers for these resources' packages. Each of these resources is rewritten to reference the default
|
|
|
|
// provider for its package.
|
|
|
|
//
|
|
|
|
// The configuration for each default provider is pulled from the stack's configuration information.
|
|
|
|
var defaultProviders []*resource.State
|
|
|
|
defaultProviderRefs := make(map[tokens.Package]providers.Reference)
|
|
|
|
for _, res := range prev.Resources {
|
|
|
|
if providers.IsProviderType(res.URN.Type()) || !res.Custom || res.Provider != "" {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
|
|
|
pkg := res.URN.Type().Package()
|
|
|
|
ref, ok := defaultProviderRefs[pkg]
|
|
|
|
if !ok {
|
|
|
|
cfg, err := target.GetPackageConfig(pkg)
|
|
|
|
if err != nil {
|
|
|
|
return errors.Errorf("could not fetch configuration for default provider '%v'", pkg)
|
|
|
|
}
|
|
|
|
|
|
|
|
inputs := make(resource.PropertyMap)
|
|
|
|
for k, v := range cfg {
|
|
|
|
inputs[resource.PropertyKey(k.Name())] = resource.NewStringProperty(v)
|
|
|
|
}
|
|
|
|
if version, ok := defaultProviderVersions[pkg]; ok {
|
|
|
|
inputs["version"] = resource.NewStringProperty(version.String())
|
|
|
|
}
|
|
|
|
|
|
|
|
urn, id := defaultProviderURN(target, source, pkg), resource.ID(uuid.NewV4().String())
|
|
|
|
ref, err = providers.NewReference(urn, id)
|
|
|
|
contract.Assert(err == nil)
|
|
|
|
|
|
|
|
provider := &resource.State{
|
|
|
|
Type: urn.Type(),
|
|
|
|
URN: urn,
|
|
|
|
Custom: true,
|
|
|
|
ID: id,
|
|
|
|
Inputs: inputs,
|
|
|
|
}
|
|
|
|
defaultProviders = append(defaultProviders, provider)
|
|
|
|
defaultProviderRefs[pkg] = ref
|
|
|
|
}
|
|
|
|
res.Provider = ref.String()
|
|
|
|
}
|
|
|
|
|
|
|
|
// If any default providers are necessary, prepend their definitions to the snapshot's resources. This trivially
|
|
|
|
// guarantees that all default provider references name providers that precede the referent in the snapshot.
|
|
|
|
if len(defaultProviders) != 0 {
|
|
|
|
prev.Resources = append(defaultProviders, prev.Resources...)
|
|
|
|
}
|
|
|
|
|
|
|
|
return nil
|
2017-06-10 01:34:37 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// NewPlan creates a new deployment plan from a resource snapshot plus a package to evaluate.
|
|
|
|
//
|
|
|
|
// From the old and new states, it understands how to orchestrate an evaluation and analyze the resulting resources.
|
|
|
|
// The plan may be used to simply inspect a series of operations, or actually perform them; these operations are
|
|
|
|
// generated based on analysis of the old and new states. If a resource exists in new, but not old, for example, it
|
|
|
|
// results in a create; if it exists in both, but is different, it results in an update; and so on and so forth.
|
|
|
|
//
|
|
|
|
// Note that a plan uses internal concurrency and parallelism in various ways, so it must be closed if for some reason
|
|
|
|
// a plan isn't carried out to its final conclusion. This will result in cancelation and reclamation of OS resources.
|
2018-01-10 02:40:08 +00:00
|
|
|
func NewPlan(ctx *plugin.Context, target *Target, prev *Snapshot, source Source, analyzers []tokens.QName,
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
preview bool) (*Plan, error) {
|
2018-01-10 02:40:08 +00:00
|
|
|
|
2017-06-11 00:03:58 +00:00
|
|
|
contract.Assert(ctx != nil)
|
|
|
|
contract.Assert(target != nil)
|
2017-08-30 01:24:12 +00:00
|
|
|
contract.Assert(source != nil)
|
2017-06-11 00:03:58 +00:00
|
|
|
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
// Add any necessary default provider references to the previous snapshot in order to accommodate stacks that were
|
|
|
|
// created prior to the changes that added first-class providers. We do this here rather than in the migration
|
|
|
|
// package s.t. the inputs to any default providers (which we fetch from the stacks's configuration) are as
|
|
|
|
// accurate as possible.
|
|
|
|
if err := addDefaultProviders(target, source, prev); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2018-05-23 21:43:17 +00:00
|
|
|
var depGraph *graph.DependencyGraph
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
var oldResources []*resource.State
|
|
|
|
|
2017-06-10 01:34:37 +00:00
|
|
|
// Produce a map of all old resources for fast resources.
|
2018-08-23 00:52:46 +00:00
|
|
|
//
|
|
|
|
// NOTE: we can and do mutate prev.Resources, olds, and depGraph during execution after performing a refresh. See
|
|
|
|
// planExecutor.refresh for details.
|
2017-06-10 01:34:37 +00:00
|
|
|
olds := make(map[resource.URN]*resource.State)
|
2017-06-11 00:03:58 +00:00
|
|
|
if prev != nil {
|
2018-10-01 16:48:48 +00:00
|
|
|
if prev.PendingOperations != nil && !preview {
|
Add a list of in-flight operations to the deployment (#1759)
* Add a list of in-flight operations to the deployment
This commit augments 'DeploymentV2' with a list of operations that are
currently in flight. This information is used by the engine to keep
track of whether or not a particular deployment is in a valid state.
The SnapshotManager is responsible for inserting and removing operations
from the in-flight operation list. When the engine registers an intent
to perform an operation, SnapshotManager inserts an Operation into this
list and saves it to the snapshot. When an operation completes, the
SnapshotManager removes it from the snapshot. From this, the engine can
infer that if it ever sees a deployment with pending operations, the
Pulumi CLI must have crashed or otherwise abnormally terminated before
seeing whether or not an operation completed successfully.
To remedy this state, this commit also adds code to 'pulumi stack
import' that clears all pending operations from a deployment, as well as
code to plan generation that will reject any deployments that have
pending operations present.
At the CLI level, if we see that we are in a state where pending
operations were in-flight when the engine died, we'll issue a
human-friendly error message that indicates which resources are in a bad
state and how to recover their stack.
* CR: Multi-line string literals, renaming in-flight -> pending
* CR: Add enum to apitype for operation type, also name status -> type for clarity
* Fix the yaml type
* Fix missed renames
* Add implementation for lifecycle_test.go
* Rebase against master
2018-08-11 04:39:59 +00:00
|
|
|
return nil, PlanPendingOperationsError{prev.PendingOperations}
|
|
|
|
}
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
oldResources = prev.Resources
|
|
|
|
|
|
|
|
for _, oldres := range oldResources {
|
2018-04-17 06:04:56 +00:00
|
|
|
// Ignore resources that are pending deletion; these should not be recorded in the LUT.
|
|
|
|
if oldres.Delete {
|
2017-10-05 21:08:35 +00:00
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
2017-08-30 01:24:12 +00:00
|
|
|
urn := oldres.URN
|
2018-10-31 17:33:00 +00:00
|
|
|
if olds[urn] != nil {
|
|
|
|
return nil, errors.Errorf("unexpected duplicate resource '%s'", urn)
|
|
|
|
}
|
2017-06-11 00:03:58 +00:00
|
|
|
olds[urn] = oldres
|
|
|
|
}
|
2018-05-23 21:43:17 +00:00
|
|
|
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
depGraph = graph.NewDependencyGraph(oldResources)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a new provider registry. Although we really only need to pass in any providers that were present in the
|
|
|
|
// old resource list, the registry itself will filter out other sorts of resources when processing the prior state,
|
|
|
|
// so we just pass all of the old resources.
|
|
|
|
reg, err := providers.NewRegistry(ctx.Host, oldResources, preview)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
2017-03-01 21:34:29 +00:00
|
|
|
}
|
|
|
|
|
2017-06-10 01:34:37 +00:00
|
|
|
return &Plan{
|
Make more progress on the new deployment model
This change restructures a lot more pertaining to deployments, snapshots,
environments, and the like.
The most notable change is that the notion of a deploy.Source is introduced,
which splits the responsibility between the deploy.Plan -- which simply
understands how to compute and carry out deployment plans -- and the idea
of something that can produce new objects on-demand during deployment.
The primary such implementation is evalSource, which encapsulates an
interpreter and takes a package, args, and config map, and proceeds to run
the interpreter in a distinct goroutine. It synchronizes as needed to
poke and prod the interpreter along its path to create new resource objects.
There are two other sources, however. First, a nullSource, which simply
refuses to create new objects. This can be handy when writing isolated
tests but is also used to simulate the "empty" environment as necessary to
do a complete teardown of the target environment. Second, a fixedSource,
which takes a pre-computed array of objects, and hands those, in order, to
the planning engine; this is mostly useful as a testing technique.
Boatloads of code is now changed and updated in the various CLI commands.
This further chugs along towards pulumi/lumi#90. The end is in sight.
2017-06-10 18:50:47 +00:00
|
|
|
ctx: ctx,
|
2017-06-11 00:03:58 +00:00
|
|
|
target: target,
|
Make more progress on the new deployment model
This change restructures a lot more pertaining to deployments, snapshots,
environments, and the like.
The most notable change is that the notion of a deploy.Source is introduced,
which splits the responsibility between the deploy.Plan -- which simply
understands how to compute and carry out deployment plans -- and the idea
of something that can produce new objects on-demand during deployment.
The primary such implementation is evalSource, which encapsulates an
interpreter and takes a package, args, and config map, and proceeds to run
the interpreter in a distinct goroutine. It synchronizes as needed to
poke and prod the interpreter along its path to create new resource objects.
There are two other sources, however. First, a nullSource, which simply
refuses to create new objects. This can be handy when writing isolated
tests but is also used to simulate the "empty" environment as necessary to
do a complete teardown of the target environment. Second, a fixedSource,
which takes a pre-computed array of objects, and hands those, in order, to
the planning engine; this is mostly useful as a testing technique.
Boatloads of code is now changed and updated in the various CLI commands.
This further chugs along towards pulumi/lumi#90. The end is in sight.
2017-06-10 18:50:47 +00:00
|
|
|
prev: prev,
|
2017-06-10 01:34:37 +00:00
|
|
|
olds: olds,
|
2017-08-30 01:24:12 +00:00
|
|
|
source: source,
|
2017-06-10 01:34:37 +00:00
|
|
|
analyzers: analyzers,
|
2018-01-10 02:40:08 +00:00
|
|
|
preview: preview,
|
2018-05-23 21:43:17 +00:00
|
|
|
depGraph: depGraph,
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
providers: reg,
|
|
|
|
}, nil
|
2017-03-01 21:34:29 +00:00
|
|
|
}
|
|
|
|
|
Make more progress on the new deployment model
This change restructures a lot more pertaining to deployments, snapshots,
environments, and the like.
The most notable change is that the notion of a deploy.Source is introduced,
which splits the responsibility between the deploy.Plan -- which simply
understands how to compute and carry out deployment plans -- and the idea
of something that can produce new objects on-demand during deployment.
The primary such implementation is evalSource, which encapsulates an
interpreter and takes a package, args, and config map, and proceeds to run
the interpreter in a distinct goroutine. It synchronizes as needed to
poke and prod the interpreter along its path to create new resource objects.
There are two other sources, however. First, a nullSource, which simply
refuses to create new objects. This can be handy when writing isolated
tests but is also used to simulate the "empty" environment as necessary to
do a complete teardown of the target environment. Second, a fixedSource,
which takes a pre-computed array of objects, and hands those, in order, to
the planning engine; this is mostly useful as a testing technique.
Boatloads of code is now changed and updated in the various CLI commands.
This further chugs along towards pulumi/lumi#90. The end is in sight.
2017-06-10 18:50:47 +00:00
|
|
|
func (p *Plan) Ctx() *plugin.Context { return p.ctx }
|
2017-06-11 00:03:58 +00:00
|
|
|
func (p *Plan) Target() *Target { return p.target }
|
Make more progress on the new deployment model
This change restructures a lot more pertaining to deployments, snapshots,
environments, and the like.
The most notable change is that the notion of a deploy.Source is introduced,
which splits the responsibility between the deploy.Plan -- which simply
understands how to compute and carry out deployment plans -- and the idea
of something that can produce new objects on-demand during deployment.
The primary such implementation is evalSource, which encapsulates an
interpreter and takes a package, args, and config map, and proceeds to run
the interpreter in a distinct goroutine. It synchronizes as needed to
poke and prod the interpreter along its path to create new resource objects.
There are two other sources, however. First, a nullSource, which simply
refuses to create new objects. This can be handy when writing isolated
tests but is also used to simulate the "empty" environment as necessary to
do a complete teardown of the target environment. Second, a fixedSource,
which takes a pre-computed array of objects, and hands those, in order, to
the planning engine; this is mostly useful as a testing technique.
Boatloads of code is now changed and updated in the various CLI commands.
This further chugs along towards pulumi/lumi#90. The end is in sight.
2017-06-10 18:50:47 +00:00
|
|
|
func (p *Plan) Diag() diag.Sink { return p.ctx.Diag }
|
|
|
|
func (p *Plan) Prev() *Snapshot { return p.prev }
|
2017-06-10 01:34:37 +00:00
|
|
|
func (p *Plan) Olds() map[resource.URN]*resource.State { return p.olds }
|
2017-08-30 01:24:12 +00:00
|
|
|
func (p *Plan) Source() Source { return p.source }
|
Begin resource modeling and planning
This change introduces a new package, pkg/resource, that will form
the foundation for actually performing deployment plans and applications.
It contains the following key abstractions:
* resource.Provider is a wrapper around the CRUD operations exposed by
underlying resource plugins. It will eventually defer to resource.Plugin,
which itself defers -- over an RPC interface -- to the actual plugin, one
per package exposing resources. The provider will also understand how to
load, cache, and overall manage the lifetime of each plugin.
* resource.Resource is the actual resource object. This is created from
the overall evaluation object graph, but is simplified. It contains only
serializable properties, for example. Inter-resource references are
translated into serializable monikers as part of creating the resource.
* resource.Moniker is a serializable string that uniquely identifies
a resource in the Mu system. This is in contrast to resource IDs, which
are generated by resource providers and generally opaque to the Mu
system. See marapongo/mu#69 for more information about monikers and some
of their challenges (namely, designing a stable algorithm).
* resource.Snapshot is a "snapshot" taken from a graph of resources. This
is a transitive closure of state representing one possible configuration
of a given environment. This is what plans are created from. Eventually,
two snapshots will be diffable, in order to perform incremental updates.
One way of thinking about this is that a snapshot of the old world's state
is advanced, one step at a time, until it reaches a desired snapshot of
the new world's state.
* resource.Plan is a plan for carrying out desired CRUD operations on a target
environment. Each plan consists of zero-to-many Steps, each of which has
a CRUD operation type, a resource target, and a next step. This is an
enumerator because it is possible the plan will evolve -- and introduce new
steps -- as it is carried out (hence, the Next() method). At the moment, this
is linearized; eventually, we want to make this more "graph-like" so that we
can exploit available parallelism within the dependencies.
There are tons of TODOs remaining. However, the `mu plan` command is functioning
with these new changes -- including colorization FTW -- so I'm landing it now.
This is part of marapongo/mu#38 and marapongo/mu#41.
2017-02-17 20:31:48 +00:00
|
|
|
|
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
2018-08-07 00:50:29 +00:00
|
|
|
func (p *Plan) GetProvider(ref providers.Reference) (plugin.Provider, bool) {
|
|
|
|
return p.providers.GetProvider(ref)
|
|
|
|
}
|
|
|
|
|
|
|
|
// generateURN generates a resource's URN from its parent, type, and name under the scope of the plan's stack and
|
|
|
|
// project.
|
|
|
|
func (p *Plan) generateURN(parent resource.URN, ty tokens.Type, name tokens.QName) resource.URN {
|
|
|
|
// Use the resource goal state name to produce a globally unique URN.
|
|
|
|
parentType := tokens.Type("")
|
|
|
|
if parent != "" && parent.Type() != resource.RootStackType {
|
|
|
|
// Skip empty parents and don't use the root stack type; otherwise, use the full qualified type.
|
|
|
|
parentType = parent.QualifiedType()
|
|
|
|
}
|
|
|
|
|
|
|
|
return resource.NewURN(p.Target().Name, p.source.Project(), parentType, ty, name)
|
|
|
|
}
|
|
|
|
|
|
|
|
// defaultProviderURN generates the URN for the global provider given a package.
|
|
|
|
func defaultProviderURN(target *Target, source Source, pkg tokens.Package) resource.URN {
|
|
|
|
return resource.NewURN(target.Name, source.Project(), "", providers.MakeProviderType(pkg), "default")
|
2018-02-06 17:57:32 +00:00
|
|
|
}
|
2018-08-21 21:05:00 +00:00
|
|
|
|
|
|
|
// generateEventURN generates a URN for the resource associated with the given event.
|
|
|
|
func (p *Plan) generateEventURN(event SourceEvent) resource.URN {
|
|
|
|
contract.Require(event != nil, "event != nil")
|
|
|
|
|
|
|
|
switch e := event.(type) {
|
|
|
|
case RegisterResourceEvent:
|
|
|
|
goal := e.Goal()
|
|
|
|
return p.generateURN(goal.Parent, goal.Type, goal.Name)
|
|
|
|
case ReadResourceEvent:
|
|
|
|
return p.generateURN(e.Parent(), e.Type(), e.Name())
|
|
|
|
case RegisterResourceOutputsEvent:
|
|
|
|
return e.URN()
|
|
|
|
default:
|
|
|
|
return ""
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Execute executes a plan to completion, using the given cancellation context and running a preview
|
|
|
|
// or update.
|
2018-08-22 02:33:59 +00:00
|
|
|
func (p *Plan) Execute(ctx context.Context, opts Options, preview bool) error {
|
2018-08-21 21:05:00 +00:00
|
|
|
planExec := &planExecutor{plan: p}
|
|
|
|
return planExec.Execute(ctx, opts, preview)
|
|
|
|
}
|