2022-07-12 13:45:03 +00:00
|
|
|
// source: pulumi/engine.proto
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
/**
|
|
|
|
* @fileoverview
|
|
|
|
* @enhanceable
|
2022-05-31 14:41:40 +00:00
|
|
|
* @suppress {missingRequire} reports error on implicit type usages.
|
Implement components
This change implements core support for "components" in the Pulumi
Fabric. This work is described further in pulumi/pulumi#340, where
we are still discussing some of the finer points.
In a nutshell, resources no longer imply external providers. It's
entirely possible to have a resource that logically represents
something but without having a physical manifestation that needs to
be tracked and managed by our typical CRUD operations.
For example, the aws/serverless/Function helper is one such type.
It aggregates Lambda-related resources and exposes a nice interface.
All of the Pulumi Cloud Framework resources are also examples.
To indicate that a resource does participate in the usual CRUD resource
provider, it simply derives from ExternalResource instead of Resource.
All resources now have the ability to adopt children. This is purely
a metadata/tagging thing, and will help us roll up displays, provide
attribution to the developer, and even hide aspects of the resource
graph as appropriate (e.g., when they are implementation details).
Our use of this capability is ultra limited right now; in fact, the
only place we display children is in the CLI output. For instance:
+ aws:serverless:Function: (create)
[urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda]
=> urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole
=> urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0
=> urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda
The bit indicating whether a resource is external or not is tracked
in the resulting checkpoint file, along with any of its children.
2017-10-14 21:18:43 +00:00
|
|
|
* @suppress {messageConventions} JS Compiler reports an error if a variable or
|
|
|
|
* field starts with 'MSG_' and isn't a translatable message.
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
* @public
|
|
|
|
*/
|
|
|
|
// GENERATED CODE -- DO NOT EDIT!
|
2022-05-31 14:41:40 +00:00
|
|
|
/* eslint-disable */
|
|
|
|
// @ts-nocheck
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
|
|
|
|
var jspb = require('google-protobuf');
|
|
|
|
var goog = jspb;
|
2023-11-10 13:31:14 +00:00
|
|
|
var proto = { pulumirpc: { codegen: { }, testing: { } } }, global = proto;
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
|
|
|
|
var google_protobuf_empty_pb = require('google-protobuf/google/protobuf/empty_pb.js');
|
2020-02-28 11:53:47 +00:00
|
|
|
goog.object.extend(proto, google_protobuf_empty_pb);
|
2018-09-18 18:47:34 +00:00
|
|
|
goog.exportSymbol('proto.pulumirpc.GetRootResourceRequest', null, global);
|
|
|
|
goog.exportSymbol('proto.pulumirpc.GetRootResourceResponse', null, global);
|
2017-09-22 02:18:21 +00:00
|
|
|
goog.exportSymbol('proto.pulumirpc.LogRequest', null, global);
|
|
|
|
goog.exportSymbol('proto.pulumirpc.LogSeverity', null, global);
|
2018-09-18 18:47:34 +00:00
|
|
|
goog.exportSymbol('proto.pulumirpc.SetRootResourceRequest', null, global);
|
|
|
|
goog.exportSymbol('proto.pulumirpc.SetRootResourceResponse', null, global);
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
/**
|
|
|
|
* Generated by JsPbCodeGenerator.
|
|
|
|
* @param {Array=} opt_data Optional initial data array, typically from a
|
|
|
|
* server response, or constructed directly in Javascript. The array is used
|
|
|
|
* in place and becomes part of the constructed object. It is not cloned.
|
|
|
|
* If no data is provided, the constructed object will be empty, but still
|
|
|
|
* valid.
|
|
|
|
* @extends {jspb.Message}
|
|
|
|
* @constructor
|
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest = function(opt_data) {
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
jspb.Message.initialize(this, opt_data, 0, -1, null, null);
|
|
|
|
};
|
2017-09-22 02:18:21 +00:00
|
|
|
goog.inherits(proto.pulumirpc.LogRequest, jspb.Message);
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
if (goog.DEBUG && !COMPILED) {
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* @public
|
|
|
|
* @override
|
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.displayName = 'proto.pulumirpc.LogRequest';
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
}
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* Generated by JsPbCodeGenerator.
|
|
|
|
* @param {Array=} opt_data Optional initial data array, typically from a
|
|
|
|
* server response, or constructed directly in Javascript. The array is used
|
|
|
|
* in place and becomes part of the constructed object. It is not cloned.
|
|
|
|
* If no data is provided, the constructed object will be empty, but still
|
|
|
|
* valid.
|
|
|
|
* @extends {jspb.Message}
|
|
|
|
* @constructor
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceRequest = function(opt_data) {
|
|
|
|
jspb.Message.initialize(this, opt_data, 0, -1, null, null);
|
|
|
|
};
|
|
|
|
goog.inherits(proto.pulumirpc.GetRootResourceRequest, jspb.Message);
|
|
|
|
if (goog.DEBUG && !COMPILED) {
|
|
|
|
/**
|
|
|
|
* @public
|
|
|
|
* @override
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceRequest.displayName = 'proto.pulumirpc.GetRootResourceRequest';
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* Generated by JsPbCodeGenerator.
|
|
|
|
* @param {Array=} opt_data Optional initial data array, typically from a
|
|
|
|
* server response, or constructed directly in Javascript. The array is used
|
|
|
|
* in place and becomes part of the constructed object. It is not cloned.
|
|
|
|
* If no data is provided, the constructed object will be empty, but still
|
|
|
|
* valid.
|
|
|
|
* @extends {jspb.Message}
|
|
|
|
* @constructor
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse = function(opt_data) {
|
|
|
|
jspb.Message.initialize(this, opt_data, 0, -1, null, null);
|
|
|
|
};
|
|
|
|
goog.inherits(proto.pulumirpc.GetRootResourceResponse, jspb.Message);
|
|
|
|
if (goog.DEBUG && !COMPILED) {
|
|
|
|
/**
|
|
|
|
* @public
|
|
|
|
* @override
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.displayName = 'proto.pulumirpc.GetRootResourceResponse';
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* Generated by JsPbCodeGenerator.
|
|
|
|
* @param {Array=} opt_data Optional initial data array, typically from a
|
|
|
|
* server response, or constructed directly in Javascript. The array is used
|
|
|
|
* in place and becomes part of the constructed object. It is not cloned.
|
|
|
|
* If no data is provided, the constructed object will be empty, but still
|
|
|
|
* valid.
|
|
|
|
* @extends {jspb.Message}
|
|
|
|
* @constructor
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest = function(opt_data) {
|
|
|
|
jspb.Message.initialize(this, opt_data, 0, -1, null, null);
|
|
|
|
};
|
|
|
|
goog.inherits(proto.pulumirpc.SetRootResourceRequest, jspb.Message);
|
|
|
|
if (goog.DEBUG && !COMPILED) {
|
|
|
|
/**
|
|
|
|
* @public
|
|
|
|
* @override
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.displayName = 'proto.pulumirpc.SetRootResourceRequest';
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* Generated by JsPbCodeGenerator.
|
|
|
|
* @param {Array=} opt_data Optional initial data array, typically from a
|
|
|
|
* server response, or constructed directly in Javascript. The array is used
|
|
|
|
* in place and becomes part of the constructed object. It is not cloned.
|
|
|
|
* If no data is provided, the constructed object will be empty, but still
|
|
|
|
* valid.
|
|
|
|
* @extends {jspb.Message}
|
|
|
|
* @constructor
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceResponse = function(opt_data) {
|
|
|
|
jspb.Message.initialize(this, opt_data, 0, -1, null, null);
|
|
|
|
};
|
|
|
|
goog.inherits(proto.pulumirpc.SetRootResourceResponse, jspb.Message);
|
|
|
|
if (goog.DEBUG && !COMPILED) {
|
|
|
|
/**
|
|
|
|
* @public
|
|
|
|
* @override
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceResponse.displayName = 'proto.pulumirpc.SetRootResourceResponse';
|
|
|
|
}
|
|
|
|
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
if (jspb.Message.GENERATE_TO_OBJECT) {
|
|
|
|
/**
|
2020-02-28 11:53:47 +00:00
|
|
|
* Creates an object representation of this proto.
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
* Field names that are reserved in JavaScript and will be renamed to pb_name.
|
2020-02-28 11:53:47 +00:00
|
|
|
* Optional fields that are not set will be set to undefined.
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
* To access a reserved field use, foo.pb_<name>, eg, foo.pb_default.
|
|
|
|
* For the list of reserved names please see:
|
2020-02-28 11:53:47 +00:00
|
|
|
* net/proto2/compiler/js/internal/generator.cc#kKeyword.
|
|
|
|
* @param {boolean=} opt_includeInstance Deprecated. whether to include the
|
|
|
|
* JSPB instance for transitional soy proto support:
|
|
|
|
* http://goto/soy-param-migration
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
* @return {!Object}
|
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.toObject = function(opt_includeInstance) {
|
|
|
|
return proto.pulumirpc.LogRequest.toObject(opt_includeInstance, this);
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Static version of the {@see toObject} method.
|
2020-02-28 11:53:47 +00:00
|
|
|
* @param {boolean|undefined} includeInstance Deprecated. Whether to include
|
|
|
|
* the JSPB instance for transitional soy proto support:
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
* http://goto/soy-param-migration
|
2017-09-22 02:18:21 +00:00
|
|
|
* @param {!proto.pulumirpc.LogRequest} msg The msg instance to transform.
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
* @return {!Object}
|
Implement components
This change implements core support for "components" in the Pulumi
Fabric. This work is described further in pulumi/pulumi#340, where
we are still discussing some of the finer points.
In a nutshell, resources no longer imply external providers. It's
entirely possible to have a resource that logically represents
something but without having a physical manifestation that needs to
be tracked and managed by our typical CRUD operations.
For example, the aws/serverless/Function helper is one such type.
It aggregates Lambda-related resources and exposes a nice interface.
All of the Pulumi Cloud Framework resources are also examples.
To indicate that a resource does participate in the usual CRUD resource
provider, it simply derives from ExternalResource instead of Resource.
All resources now have the ability to adopt children. This is purely
a metadata/tagging thing, and will help us roll up displays, provide
attribution to the developer, and even hide aspects of the resource
graph as appropriate (e.g., when they are implementation details).
Our use of this capability is ultra limited right now; in fact, the
only place we display children is in the CLI output. For instance:
+ aws:serverless:Function: (create)
[urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda]
=> urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole
=> urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0
=> urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda
The bit indicating whether a resource is external or not is tracked
in the resulting checkpoint file, along with any of its children.
2017-10-14 21:18:43 +00:00
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.toObject = function(includeInstance, msg) {
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
var f, obj = {
|
|
|
|
severity: jspb.Message.getFieldWithDefault(msg, 1, 0),
|
2018-04-10 19:03:11 +00:00
|
|
|
message: jspb.Message.getFieldWithDefault(msg, 2, ""),
|
2018-07-11 22:04:00 +00:00
|
|
|
urn: jspb.Message.getFieldWithDefault(msg, 3, ""),
|
2018-08-30 07:17:26 +00:00
|
|
|
streamid: jspb.Message.getFieldWithDefault(msg, 4, 0),
|
2020-02-28 11:53:47 +00:00
|
|
|
ephemeral: jspb.Message.getBooleanFieldWithDefault(msg, 5, false)
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
if (includeInstance) {
|
|
|
|
obj.$jspbMessageInstance = msg;
|
|
|
|
}
|
|
|
|
return obj;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format).
|
|
|
|
* @param {jspb.ByteSource} bytes The bytes to deserialize.
|
2017-09-22 02:18:21 +00:00
|
|
|
* @return {!proto.pulumirpc.LogRequest}
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.deserializeBinary = function(bytes) {
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
var reader = new jspb.BinaryReader(bytes);
|
2017-09-22 02:18:21 +00:00
|
|
|
var msg = new proto.pulumirpc.LogRequest;
|
|
|
|
return proto.pulumirpc.LogRequest.deserializeBinaryFromReader(msg, reader);
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format) from the
|
|
|
|
* given reader into the given message object.
|
2017-09-22 02:18:21 +00:00
|
|
|
* @param {!proto.pulumirpc.LogRequest} msg The message object to deserialize into.
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
* @param {!jspb.BinaryReader} reader The BinaryReader to use.
|
2017-09-22 02:18:21 +00:00
|
|
|
* @return {!proto.pulumirpc.LogRequest}
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.deserializeBinaryFromReader = function(msg, reader) {
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
while (reader.nextField()) {
|
|
|
|
if (reader.isEndGroup()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
var field = reader.getFieldNumber();
|
|
|
|
switch (field) {
|
|
|
|
case 1:
|
2017-09-22 02:18:21 +00:00
|
|
|
var value = /** @type {!proto.pulumirpc.LogSeverity} */ (reader.readEnum());
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
msg.setSeverity(value);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
var value = /** @type {string} */ (reader.readString());
|
|
|
|
msg.setMessage(value);
|
|
|
|
break;
|
2018-04-10 19:03:11 +00:00
|
|
|
case 3:
|
|
|
|
var value = /** @type {string} */ (reader.readString());
|
|
|
|
msg.setUrn(value);
|
|
|
|
break;
|
2018-07-11 22:04:00 +00:00
|
|
|
case 4:
|
|
|
|
var value = /** @type {number} */ (reader.readInt32());
|
|
|
|
msg.setStreamid(value);
|
|
|
|
break;
|
2018-08-30 07:17:26 +00:00
|
|
|
case 5:
|
|
|
|
var value = /** @type {boolean} */ (reader.readBool());
|
2018-08-31 19:34:44 +00:00
|
|
|
msg.setEphemeral(value);
|
2018-08-30 07:17:26 +00:00
|
|
|
break;
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
default:
|
|
|
|
reader.skipField();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return msg;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the message to binary data (in protobuf wire format).
|
|
|
|
* @return {!Uint8Array}
|
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.serializeBinary = function() {
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
var writer = new jspb.BinaryWriter();
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.serializeBinaryToWriter(this, writer);
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
return writer.getResultBuffer();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the given message to binary data (in protobuf wire
|
|
|
|
* format), writing to the given BinaryWriter.
|
2017-09-22 02:18:21 +00:00
|
|
|
* @param {!proto.pulumirpc.LogRequest} message
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
* @param {!jspb.BinaryWriter} writer
|
Implement components
This change implements core support for "components" in the Pulumi
Fabric. This work is described further in pulumi/pulumi#340, where
we are still discussing some of the finer points.
In a nutshell, resources no longer imply external providers. It's
entirely possible to have a resource that logically represents
something but without having a physical manifestation that needs to
be tracked and managed by our typical CRUD operations.
For example, the aws/serverless/Function helper is one such type.
It aggregates Lambda-related resources and exposes a nice interface.
All of the Pulumi Cloud Framework resources are also examples.
To indicate that a resource does participate in the usual CRUD resource
provider, it simply derives from ExternalResource instead of Resource.
All resources now have the ability to adopt children. This is purely
a metadata/tagging thing, and will help us roll up displays, provide
attribution to the developer, and even hide aspects of the resource
graph as appropriate (e.g., when they are implementation details).
Our use of this capability is ultra limited right now; in fact, the
only place we display children is in the CLI output. For instance:
+ aws:serverless:Function: (create)
[urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda]
=> urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole
=> urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0
=> urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda
The bit indicating whether a resource is external or not is tracked
in the resulting checkpoint file, along with any of its children.
2017-10-14 21:18:43 +00:00
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.serializeBinaryToWriter = function(message, writer) {
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
var f = undefined;
|
|
|
|
f = message.getSeverity();
|
|
|
|
if (f !== 0.0) {
|
|
|
|
writer.writeEnum(
|
|
|
|
1,
|
|
|
|
f
|
|
|
|
);
|
|
|
|
}
|
|
|
|
f = message.getMessage();
|
|
|
|
if (f.length > 0) {
|
|
|
|
writer.writeString(
|
|
|
|
2,
|
|
|
|
f
|
|
|
|
);
|
|
|
|
}
|
2018-04-10 19:03:11 +00:00
|
|
|
f = message.getUrn();
|
|
|
|
if (f.length > 0) {
|
|
|
|
writer.writeString(
|
|
|
|
3,
|
|
|
|
f
|
|
|
|
);
|
|
|
|
}
|
2018-07-11 22:04:00 +00:00
|
|
|
f = message.getStreamid();
|
|
|
|
if (f !== 0) {
|
|
|
|
writer.writeInt32(
|
|
|
|
4,
|
|
|
|
f
|
|
|
|
);
|
|
|
|
}
|
2018-08-31 19:34:44 +00:00
|
|
|
f = message.getEphemeral();
|
2018-08-30 07:17:26 +00:00
|
|
|
if (f) {
|
|
|
|
writer.writeBool(
|
|
|
|
5,
|
|
|
|
f
|
|
|
|
);
|
|
|
|
}
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* optional LogSeverity severity = 1;
|
2017-09-22 02:18:21 +00:00
|
|
|
* @return {!proto.pulumirpc.LogSeverity}
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.getSeverity = function() {
|
|
|
|
return /** @type {!proto.pulumirpc.LogSeverity} */ (jspb.Message.getFieldWithDefault(this, 1, 0));
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* @param {!proto.pulumirpc.LogSeverity} value
|
|
|
|
* @return {!proto.pulumirpc.LogRequest} returns this
|
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.setSeverity = function(value) {
|
2020-02-28 11:53:47 +00:00
|
|
|
return jspb.Message.setProto3EnumField(this, 1, value);
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* optional string message = 2;
|
|
|
|
* @return {string}
|
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.getMessage = function() {
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
return /** @type {string} */ (jspb.Message.getFieldWithDefault(this, 2, ""));
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* @param {string} value
|
|
|
|
* @return {!proto.pulumirpc.LogRequest} returns this
|
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.setMessage = function(value) {
|
2020-02-28 11:53:47 +00:00
|
|
|
return jspb.Message.setProto3StringField(this, 2, value);
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2018-04-10 19:03:11 +00:00
|
|
|
/**
|
|
|
|
* optional string urn = 3;
|
|
|
|
* @return {string}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.LogRequest.prototype.getUrn = function() {
|
|
|
|
return /** @type {string} */ (jspb.Message.getFieldWithDefault(this, 3, ""));
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* @param {string} value
|
|
|
|
* @return {!proto.pulumirpc.LogRequest} returns this
|
|
|
|
*/
|
2018-04-10 19:03:11 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.setUrn = function(value) {
|
2020-02-28 11:53:47 +00:00
|
|
|
return jspb.Message.setProto3StringField(this, 3, value);
|
2018-04-10 19:03:11 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2018-07-11 22:04:00 +00:00
|
|
|
/**
|
|
|
|
* optional int32 streamId = 4;
|
|
|
|
* @return {number}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.LogRequest.prototype.getStreamid = function() {
|
|
|
|
return /** @type {number} */ (jspb.Message.getFieldWithDefault(this, 4, 0));
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* @param {number} value
|
|
|
|
* @return {!proto.pulumirpc.LogRequest} returns this
|
|
|
|
*/
|
2018-07-11 22:04:00 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.setStreamid = function(value) {
|
2020-02-28 11:53:47 +00:00
|
|
|
return jspb.Message.setProto3IntField(this, 4, value);
|
2018-07-11 22:04:00 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2018-08-30 07:17:26 +00:00
|
|
|
/**
|
2018-08-31 19:34:44 +00:00
|
|
|
* optional bool ephemeral = 5;
|
2018-08-30 07:17:26 +00:00
|
|
|
* @return {boolean}
|
|
|
|
*/
|
2018-08-31 19:34:44 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.getEphemeral = function() {
|
2020-02-28 11:53:47 +00:00
|
|
|
return /** @type {boolean} */ (jspb.Message.getBooleanFieldWithDefault(this, 5, false));
|
2018-08-30 07:17:26 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* @param {boolean} value
|
|
|
|
* @return {!proto.pulumirpc.LogRequest} returns this
|
|
|
|
*/
|
2018-08-31 19:34:44 +00:00
|
|
|
proto.pulumirpc.LogRequest.prototype.setEphemeral = function(value) {
|
2020-02-28 11:53:47 +00:00
|
|
|
return jspb.Message.setProto3BooleanField(this, 5, value);
|
2018-08-30 07:17:26 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2018-09-18 18:47:34 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (jspb.Message.GENERATE_TO_OBJECT) {
|
|
|
|
/**
|
2020-02-28 11:53:47 +00:00
|
|
|
* Creates an object representation of this proto.
|
2018-09-18 18:47:34 +00:00
|
|
|
* Field names that are reserved in JavaScript and will be renamed to pb_name.
|
2020-02-28 11:53:47 +00:00
|
|
|
* Optional fields that are not set will be set to undefined.
|
2018-09-18 18:47:34 +00:00
|
|
|
* To access a reserved field use, foo.pb_<name>, eg, foo.pb_default.
|
|
|
|
* For the list of reserved names please see:
|
2020-02-28 11:53:47 +00:00
|
|
|
* net/proto2/compiler/js/internal/generator.cc#kKeyword.
|
|
|
|
* @param {boolean=} opt_includeInstance Deprecated. whether to include the
|
|
|
|
* JSPB instance for transitional soy proto support:
|
|
|
|
* http://goto/soy-param-migration
|
2018-09-18 18:47:34 +00:00
|
|
|
* @return {!Object}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceRequest.prototype.toObject = function(opt_includeInstance) {
|
|
|
|
return proto.pulumirpc.GetRootResourceRequest.toObject(opt_includeInstance, this);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Static version of the {@see toObject} method.
|
2020-02-28 11:53:47 +00:00
|
|
|
* @param {boolean|undefined} includeInstance Deprecated. Whether to include
|
|
|
|
* the JSPB instance for transitional soy proto support:
|
2018-09-18 18:47:34 +00:00
|
|
|
* http://goto/soy-param-migration
|
|
|
|
* @param {!proto.pulumirpc.GetRootResourceRequest} msg The msg instance to transform.
|
|
|
|
* @return {!Object}
|
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceRequest.toObject = function(includeInstance, msg) {
|
|
|
|
var f, obj = {
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
if (includeInstance) {
|
|
|
|
obj.$jspbMessageInstance = msg;
|
|
|
|
}
|
|
|
|
return obj;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format).
|
|
|
|
* @param {jspb.ByteSource} bytes The bytes to deserialize.
|
|
|
|
* @return {!proto.pulumirpc.GetRootResourceRequest}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceRequest.deserializeBinary = function(bytes) {
|
|
|
|
var reader = new jspb.BinaryReader(bytes);
|
|
|
|
var msg = new proto.pulumirpc.GetRootResourceRequest;
|
|
|
|
return proto.pulumirpc.GetRootResourceRequest.deserializeBinaryFromReader(msg, reader);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format) from the
|
|
|
|
* given reader into the given message object.
|
|
|
|
* @param {!proto.pulumirpc.GetRootResourceRequest} msg The message object to deserialize into.
|
|
|
|
* @param {!jspb.BinaryReader} reader The BinaryReader to use.
|
|
|
|
* @return {!proto.pulumirpc.GetRootResourceRequest}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceRequest.deserializeBinaryFromReader = function(msg, reader) {
|
|
|
|
while (reader.nextField()) {
|
|
|
|
if (reader.isEndGroup()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
var field = reader.getFieldNumber();
|
|
|
|
switch (field) {
|
|
|
|
default:
|
|
|
|
reader.skipField();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return msg;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the message to binary data (in protobuf wire format).
|
|
|
|
* @return {!Uint8Array}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceRequest.prototype.serializeBinary = function() {
|
|
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
proto.pulumirpc.GetRootResourceRequest.serializeBinaryToWriter(this, writer);
|
|
|
|
return writer.getResultBuffer();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the given message to binary data (in protobuf wire
|
|
|
|
* format), writing to the given BinaryWriter.
|
|
|
|
* @param {!proto.pulumirpc.GetRootResourceRequest} message
|
|
|
|
* @param {!jspb.BinaryWriter} writer
|
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceRequest.serializeBinaryToWriter = function(message, writer) {
|
|
|
|
var f = undefined;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (jspb.Message.GENERATE_TO_OBJECT) {
|
|
|
|
/**
|
2020-02-28 11:53:47 +00:00
|
|
|
* Creates an object representation of this proto.
|
2018-09-18 18:47:34 +00:00
|
|
|
* Field names that are reserved in JavaScript and will be renamed to pb_name.
|
2020-02-28 11:53:47 +00:00
|
|
|
* Optional fields that are not set will be set to undefined.
|
2018-09-18 18:47:34 +00:00
|
|
|
* To access a reserved field use, foo.pb_<name>, eg, foo.pb_default.
|
|
|
|
* For the list of reserved names please see:
|
2020-02-28 11:53:47 +00:00
|
|
|
* net/proto2/compiler/js/internal/generator.cc#kKeyword.
|
|
|
|
* @param {boolean=} opt_includeInstance Deprecated. whether to include the
|
|
|
|
* JSPB instance for transitional soy proto support:
|
|
|
|
* http://goto/soy-param-migration
|
2018-09-18 18:47:34 +00:00
|
|
|
* @return {!Object}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.prototype.toObject = function(opt_includeInstance) {
|
|
|
|
return proto.pulumirpc.GetRootResourceResponse.toObject(opt_includeInstance, this);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Static version of the {@see toObject} method.
|
2020-02-28 11:53:47 +00:00
|
|
|
* @param {boolean|undefined} includeInstance Deprecated. Whether to include
|
|
|
|
* the JSPB instance for transitional soy proto support:
|
2018-09-18 18:47:34 +00:00
|
|
|
* http://goto/soy-param-migration
|
|
|
|
* @param {!proto.pulumirpc.GetRootResourceResponse} msg The msg instance to transform.
|
|
|
|
* @return {!Object}
|
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.toObject = function(includeInstance, msg) {
|
|
|
|
var f, obj = {
|
|
|
|
urn: jspb.Message.getFieldWithDefault(msg, 1, "")
|
|
|
|
};
|
|
|
|
|
|
|
|
if (includeInstance) {
|
|
|
|
obj.$jspbMessageInstance = msg;
|
|
|
|
}
|
|
|
|
return obj;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format).
|
|
|
|
* @param {jspb.ByteSource} bytes The bytes to deserialize.
|
|
|
|
* @return {!proto.pulumirpc.GetRootResourceResponse}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.deserializeBinary = function(bytes) {
|
|
|
|
var reader = new jspb.BinaryReader(bytes);
|
|
|
|
var msg = new proto.pulumirpc.GetRootResourceResponse;
|
|
|
|
return proto.pulumirpc.GetRootResourceResponse.deserializeBinaryFromReader(msg, reader);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format) from the
|
|
|
|
* given reader into the given message object.
|
|
|
|
* @param {!proto.pulumirpc.GetRootResourceResponse} msg The message object to deserialize into.
|
|
|
|
* @param {!jspb.BinaryReader} reader The BinaryReader to use.
|
|
|
|
* @return {!proto.pulumirpc.GetRootResourceResponse}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.deserializeBinaryFromReader = function(msg, reader) {
|
|
|
|
while (reader.nextField()) {
|
|
|
|
if (reader.isEndGroup()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
var field = reader.getFieldNumber();
|
|
|
|
switch (field) {
|
|
|
|
case 1:
|
|
|
|
var value = /** @type {string} */ (reader.readString());
|
|
|
|
msg.setUrn(value);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
reader.skipField();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return msg;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the message to binary data (in protobuf wire format).
|
|
|
|
* @return {!Uint8Array}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.prototype.serializeBinary = function() {
|
|
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.serializeBinaryToWriter(this, writer);
|
|
|
|
return writer.getResultBuffer();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the given message to binary data (in protobuf wire
|
|
|
|
* format), writing to the given BinaryWriter.
|
|
|
|
* @param {!proto.pulumirpc.GetRootResourceResponse} message
|
|
|
|
* @param {!jspb.BinaryWriter} writer
|
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.serializeBinaryToWriter = function(message, writer) {
|
|
|
|
var f = undefined;
|
|
|
|
f = message.getUrn();
|
|
|
|
if (f.length > 0) {
|
|
|
|
writer.writeString(
|
|
|
|
1,
|
|
|
|
f
|
|
|
|
);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* optional string urn = 1;
|
|
|
|
* @return {string}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.GetRootResourceResponse.prototype.getUrn = function() {
|
|
|
|
return /** @type {string} */ (jspb.Message.getFieldWithDefault(this, 1, ""));
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* @param {string} value
|
|
|
|
* @return {!proto.pulumirpc.GetRootResourceResponse} returns this
|
|
|
|
*/
|
2018-09-18 18:47:34 +00:00
|
|
|
proto.pulumirpc.GetRootResourceResponse.prototype.setUrn = function(value) {
|
2020-02-28 11:53:47 +00:00
|
|
|
return jspb.Message.setProto3StringField(this, 1, value);
|
2018-09-18 18:47:34 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (jspb.Message.GENERATE_TO_OBJECT) {
|
|
|
|
/**
|
2020-02-28 11:53:47 +00:00
|
|
|
* Creates an object representation of this proto.
|
2018-09-18 18:47:34 +00:00
|
|
|
* Field names that are reserved in JavaScript and will be renamed to pb_name.
|
2020-02-28 11:53:47 +00:00
|
|
|
* Optional fields that are not set will be set to undefined.
|
2018-09-18 18:47:34 +00:00
|
|
|
* To access a reserved field use, foo.pb_<name>, eg, foo.pb_default.
|
|
|
|
* For the list of reserved names please see:
|
2020-02-28 11:53:47 +00:00
|
|
|
* net/proto2/compiler/js/internal/generator.cc#kKeyword.
|
|
|
|
* @param {boolean=} opt_includeInstance Deprecated. whether to include the
|
|
|
|
* JSPB instance for transitional soy proto support:
|
|
|
|
* http://goto/soy-param-migration
|
2018-09-18 18:47:34 +00:00
|
|
|
* @return {!Object}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.prototype.toObject = function(opt_includeInstance) {
|
|
|
|
return proto.pulumirpc.SetRootResourceRequest.toObject(opt_includeInstance, this);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Static version of the {@see toObject} method.
|
2020-02-28 11:53:47 +00:00
|
|
|
* @param {boolean|undefined} includeInstance Deprecated. Whether to include
|
|
|
|
* the JSPB instance for transitional soy proto support:
|
2018-09-18 18:47:34 +00:00
|
|
|
* http://goto/soy-param-migration
|
|
|
|
* @param {!proto.pulumirpc.SetRootResourceRequest} msg The msg instance to transform.
|
|
|
|
* @return {!Object}
|
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.toObject = function(includeInstance, msg) {
|
|
|
|
var f, obj = {
|
|
|
|
urn: jspb.Message.getFieldWithDefault(msg, 1, "")
|
|
|
|
};
|
|
|
|
|
|
|
|
if (includeInstance) {
|
|
|
|
obj.$jspbMessageInstance = msg;
|
|
|
|
}
|
|
|
|
return obj;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format).
|
|
|
|
* @param {jspb.ByteSource} bytes The bytes to deserialize.
|
|
|
|
* @return {!proto.pulumirpc.SetRootResourceRequest}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.deserializeBinary = function(bytes) {
|
|
|
|
var reader = new jspb.BinaryReader(bytes);
|
|
|
|
var msg = new proto.pulumirpc.SetRootResourceRequest;
|
|
|
|
return proto.pulumirpc.SetRootResourceRequest.deserializeBinaryFromReader(msg, reader);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format) from the
|
|
|
|
* given reader into the given message object.
|
|
|
|
* @param {!proto.pulumirpc.SetRootResourceRequest} msg The message object to deserialize into.
|
|
|
|
* @param {!jspb.BinaryReader} reader The BinaryReader to use.
|
|
|
|
* @return {!proto.pulumirpc.SetRootResourceRequest}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.deserializeBinaryFromReader = function(msg, reader) {
|
|
|
|
while (reader.nextField()) {
|
|
|
|
if (reader.isEndGroup()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
var field = reader.getFieldNumber();
|
|
|
|
switch (field) {
|
|
|
|
case 1:
|
|
|
|
var value = /** @type {string} */ (reader.readString());
|
|
|
|
msg.setUrn(value);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
reader.skipField();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return msg;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the message to binary data (in protobuf wire format).
|
|
|
|
* @return {!Uint8Array}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.prototype.serializeBinary = function() {
|
|
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.serializeBinaryToWriter(this, writer);
|
|
|
|
return writer.getResultBuffer();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the given message to binary data (in protobuf wire
|
|
|
|
* format), writing to the given BinaryWriter.
|
|
|
|
* @param {!proto.pulumirpc.SetRootResourceRequest} message
|
|
|
|
* @param {!jspb.BinaryWriter} writer
|
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.serializeBinaryToWriter = function(message, writer) {
|
|
|
|
var f = undefined;
|
|
|
|
f = message.getUrn();
|
|
|
|
if (f.length > 0) {
|
|
|
|
writer.writeString(
|
|
|
|
1,
|
|
|
|
f
|
|
|
|
);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* optional string urn = 1;
|
|
|
|
* @return {string}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceRequest.prototype.getUrn = function() {
|
|
|
|
return /** @type {string} */ (jspb.Message.getFieldWithDefault(this, 1, ""));
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2020-02-28 11:53:47 +00:00
|
|
|
/**
|
|
|
|
* @param {string} value
|
|
|
|
* @return {!proto.pulumirpc.SetRootResourceRequest} returns this
|
|
|
|
*/
|
2018-09-18 18:47:34 +00:00
|
|
|
proto.pulumirpc.SetRootResourceRequest.prototype.setUrn = function(value) {
|
2020-02-28 11:53:47 +00:00
|
|
|
return jspb.Message.setProto3StringField(this, 1, value);
|
2018-09-18 18:47:34 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (jspb.Message.GENERATE_TO_OBJECT) {
|
|
|
|
/**
|
2020-02-28 11:53:47 +00:00
|
|
|
* Creates an object representation of this proto.
|
2018-09-18 18:47:34 +00:00
|
|
|
* Field names that are reserved in JavaScript and will be renamed to pb_name.
|
2020-02-28 11:53:47 +00:00
|
|
|
* Optional fields that are not set will be set to undefined.
|
2018-09-18 18:47:34 +00:00
|
|
|
* To access a reserved field use, foo.pb_<name>, eg, foo.pb_default.
|
|
|
|
* For the list of reserved names please see:
|
2020-02-28 11:53:47 +00:00
|
|
|
* net/proto2/compiler/js/internal/generator.cc#kKeyword.
|
|
|
|
* @param {boolean=} opt_includeInstance Deprecated. whether to include the
|
|
|
|
* JSPB instance for transitional soy proto support:
|
|
|
|
* http://goto/soy-param-migration
|
2018-09-18 18:47:34 +00:00
|
|
|
* @return {!Object}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceResponse.prototype.toObject = function(opt_includeInstance) {
|
|
|
|
return proto.pulumirpc.SetRootResourceResponse.toObject(opt_includeInstance, this);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Static version of the {@see toObject} method.
|
2020-02-28 11:53:47 +00:00
|
|
|
* @param {boolean|undefined} includeInstance Deprecated. Whether to include
|
|
|
|
* the JSPB instance for transitional soy proto support:
|
2018-09-18 18:47:34 +00:00
|
|
|
* http://goto/soy-param-migration
|
|
|
|
* @param {!proto.pulumirpc.SetRootResourceResponse} msg The msg instance to transform.
|
|
|
|
* @return {!Object}
|
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceResponse.toObject = function(includeInstance, msg) {
|
|
|
|
var f, obj = {
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
if (includeInstance) {
|
|
|
|
obj.$jspbMessageInstance = msg;
|
|
|
|
}
|
|
|
|
return obj;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format).
|
|
|
|
* @param {jspb.ByteSource} bytes The bytes to deserialize.
|
|
|
|
* @return {!proto.pulumirpc.SetRootResourceResponse}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceResponse.deserializeBinary = function(bytes) {
|
|
|
|
var reader = new jspb.BinaryReader(bytes);
|
|
|
|
var msg = new proto.pulumirpc.SetRootResourceResponse;
|
|
|
|
return proto.pulumirpc.SetRootResourceResponse.deserializeBinaryFromReader(msg, reader);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Deserializes binary data (in protobuf wire format) from the
|
|
|
|
* given reader into the given message object.
|
|
|
|
* @param {!proto.pulumirpc.SetRootResourceResponse} msg The message object to deserialize into.
|
|
|
|
* @param {!jspb.BinaryReader} reader The BinaryReader to use.
|
|
|
|
* @return {!proto.pulumirpc.SetRootResourceResponse}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceResponse.deserializeBinaryFromReader = function(msg, reader) {
|
|
|
|
while (reader.nextField()) {
|
|
|
|
if (reader.isEndGroup()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
var field = reader.getFieldNumber();
|
|
|
|
switch (field) {
|
|
|
|
default:
|
|
|
|
reader.skipField();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return msg;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the message to binary data (in protobuf wire format).
|
|
|
|
* @return {!Uint8Array}
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceResponse.prototype.serializeBinary = function() {
|
|
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
proto.pulumirpc.SetRootResourceResponse.serializeBinaryToWriter(this, writer);
|
|
|
|
return writer.getResultBuffer();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serializes the given message to binary data (in protobuf wire
|
|
|
|
* format), writing to the given BinaryWriter.
|
|
|
|
* @param {!proto.pulumirpc.SetRootResourceResponse} message
|
|
|
|
* @param {!jspb.BinaryWriter} writer
|
|
|
|
* @suppress {unusedLocalVariables} f is only used for nested messages
|
|
|
|
*/
|
|
|
|
proto.pulumirpc.SetRootResourceResponse.serializeBinaryToWriter = function(message, writer) {
|
|
|
|
var f = undefined;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
/**
|
|
|
|
* @enum {number}
|
|
|
|
*/
|
2017-09-22 02:18:21 +00:00
|
|
|
proto.pulumirpc.LogSeverity = {
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
DEBUG: 0,
|
|
|
|
INFO: 1,
|
|
|
|
WARNING: 2,
|
|
|
|
ERROR: 3
|
|
|
|
};
|
|
|
|
|
2017-09-22 02:18:21 +00:00
|
|
|
goog.object.extend(exports, proto.pulumirpc);
|