2018-05-22 19:43:36 +00:00
|
|
|
// Copyright 2016-2018, Pulumi Corporation.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
|
2022-09-01 18:39:09 +00:00
|
|
|
import { getStore } from "./state";
|
|
|
|
|
2017-10-12 01:41:52 +00:00
|
|
|
/**
|
2018-03-02 19:36:07 +00:00
|
|
|
* configEnvKey is the environment variable key that the language plugin uses to set configuration values.
|
2022-09-01 18:39:09 +00:00
|
|
|
*
|
|
|
|
* @internal
|
2017-10-12 01:41:52 +00:00
|
|
|
*/
|
2022-09-01 18:39:09 +00:00
|
|
|
export const configEnvKey = "PULUMI_CONFIG";
|
2017-10-12 01:41:52 +00:00
|
|
|
|
2021-05-18 16:48:08 +00:00
|
|
|
/**
|
|
|
|
* configSecretKeysEnvKey is the environment variable key that the language plugin uses to set configuration keys that
|
|
|
|
* contain secrets.
|
2022-09-01 18:39:09 +00:00
|
|
|
*
|
|
|
|
* @internal
|
2021-05-18 16:48:08 +00:00
|
|
|
*/
|
2022-09-01 18:39:09 +00:00
|
|
|
export const configSecretKeysEnvKey = "PULUMI_CONFIG_SECRET_KEYS";
|
2021-05-18 16:48:08 +00:00
|
|
|
|
2018-04-07 15:02:59 +00:00
|
|
|
/**
|
|
|
|
* allConfig returns a copy of the full config map.
|
|
|
|
*/
|
2023-04-28 22:27:10 +00:00
|
|
|
export function allConfig(): { [key: string]: string } {
|
2021-01-26 22:59:32 +00:00
|
|
|
const config = parseConfig();
|
2018-04-07 15:02:59 +00:00
|
|
|
return Object.assign({}, config);
|
|
|
|
}
|
|
|
|
|
Initial support for remote component construction. (#5280)
These changes add initial support for the construction of remote
components. For now, this support is limited to the NodeJS SDK;
follow-up changes will implement support for the other SDKs.
Remote components are component resources that are constructed and
managed by plugins rather than by Pulumi programs. In this sense, they
are a bit like cloud resources, and are supported by the same
distribution and plugin loading mechanisms and described by the same
schema system.
The construction of a remote component is initiated by a
`RegisterResourceRequest` with the new `remote` field set to `true`.
When the resource monitor receives such a request, it loads the plugin
that implements the component resource and calls the `Construct`
method added to the resource provider interface as part of these
changes. This method accepts the information necessary to construct the
component and its children: the component's name, type, resource
options, inputs, and input dependencies. It is responsible for
dispatching to the appropriate component factory to create the
component, then returning its URN, resolved output properties, and
output property dependencies. The dependency information is necessary to
support features such as delete-before-replace, which rely on precise
dependency information for custom resources.
These changes also add initial support for more conveniently
implementing resource providers in NodeJS. The interface used to
implement such a provider is similar to the dynamic provider interface
(and may be unified with that interface in the future).
An example of a NodeJS program constructing a remote component resource
also implemented in NodeJS can be found in
`tests/construct_component/nodejs`.
This is the core of #2430.
2020-09-08 02:33:55 +00:00
|
|
|
/**
|
|
|
|
* setAllConfig overwrites the config map.
|
|
|
|
*/
|
2023-04-28 22:27:10 +00:00
|
|
|
export function setAllConfig(c: { [key: string]: string }, secretKeys?: string[]) {
|
|
|
|
const obj: { [key: string]: string } = {};
|
Initial support for remote component construction. (#5280)
These changes add initial support for the construction of remote
components. For now, this support is limited to the NodeJS SDK;
follow-up changes will implement support for the other SDKs.
Remote components are component resources that are constructed and
managed by plugins rather than by Pulumi programs. In this sense, they
are a bit like cloud resources, and are supported by the same
distribution and plugin loading mechanisms and described by the same
schema system.
The construction of a remote component is initiated by a
`RegisterResourceRequest` with the new `remote` field set to `true`.
When the resource monitor receives such a request, it loads the plugin
that implements the component resource and calls the `Construct`
method added to the resource provider interface as part of these
changes. This method accepts the information necessary to construct the
component and its children: the component's name, type, resource
options, inputs, and input dependencies. It is responsible for
dispatching to the appropriate component factory to create the
component, then returning its URN, resolved output properties, and
output property dependencies. The dependency information is necessary to
support features such as delete-before-replace, which rely on precise
dependency information for custom resources.
These changes also add initial support for more conveniently
implementing resource providers in NodeJS. The interface used to
implement such a provider is similar to the dynamic provider interface
(and may be unified with that interface in the future).
An example of a NodeJS program constructing a remote component resource
also implemented in NodeJS can be found in
`tests/construct_component/nodejs`.
This is the core of #2430.
2020-09-08 02:33:55 +00:00
|
|
|
for (const k of Object.keys(c)) {
|
|
|
|
obj[cleanKey(k)] = c[k];
|
|
|
|
}
|
2021-05-18 16:48:08 +00:00
|
|
|
persistConfig(obj, secretKeys);
|
Initial support for remote component construction. (#5280)
These changes add initial support for the construction of remote
components. For now, this support is limited to the NodeJS SDK;
follow-up changes will implement support for the other SDKs.
Remote components are component resources that are constructed and
managed by plugins rather than by Pulumi programs. In this sense, they
are a bit like cloud resources, and are supported by the same
distribution and plugin loading mechanisms and described by the same
schema system.
The construction of a remote component is initiated by a
`RegisterResourceRequest` with the new `remote` field set to `true`.
When the resource monitor receives such a request, it loads the plugin
that implements the component resource and calls the `Construct`
method added to the resource provider interface as part of these
changes. This method accepts the information necessary to construct the
component and its children: the component's name, type, resource
options, inputs, and input dependencies. It is responsible for
dispatching to the appropriate component factory to create the
component, then returning its URN, resolved output properties, and
output property dependencies. The dependency information is necessary to
support features such as delete-before-replace, which rely on precise
dependency information for custom resources.
These changes also add initial support for more conveniently
implementing resource providers in NodeJS. The interface used to
implement such a provider is similar to the dynamic provider interface
(and may be unified with that interface in the future).
An example of a NodeJS program constructing a remote component resource
also implemented in NodeJS can be found in
`tests/construct_component/nodejs`.
This is the core of #2430.
2020-09-08 02:33:55 +00:00
|
|
|
}
|
|
|
|
|
2017-09-22 01:15:29 +00:00
|
|
|
/**
|
|
|
|
* setConfig sets a configuration variable.
|
|
|
|
*/
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
export function setConfig(k: string, v: string): void {
|
2021-01-26 22:59:32 +00:00
|
|
|
const config = parseConfig();
|
2018-03-02 19:36:07 +00:00
|
|
|
config[cleanKey(k)] = v;
|
2021-05-18 16:48:08 +00:00
|
|
|
persistConfig(config, []);
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
}
|
|
|
|
|
2017-09-22 01:15:29 +00:00
|
|
|
/**
|
|
|
|
* getConfig returns a configuration variable's value or undefined if it is unset.
|
|
|
|
*/
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
export function getConfig(k: string): string | undefined {
|
2021-01-26 22:59:32 +00:00
|
|
|
const config = parseConfig();
|
2018-04-13 18:26:01 +00:00
|
|
|
return config[k];
|
2017-10-12 01:41:52 +00:00
|
|
|
}
|
|
|
|
|
2021-05-18 16:48:08 +00:00
|
|
|
/**
|
|
|
|
* isConfigSecret returns true if the key contains a secret value.
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
export function isConfigSecret(k: string): boolean {
|
2022-09-01 18:39:09 +00:00
|
|
|
const { config } = getStore();
|
|
|
|
const envConfigSecretKeys = config[configSecretKeysEnvKey];
|
2021-05-18 16:48:08 +00:00
|
|
|
if (envConfigSecretKeys) {
|
|
|
|
const envConfigSecretArray = JSON.parse(envConfigSecretKeys);
|
|
|
|
if (Array.isArray(envConfigSecretArray)) {
|
|
|
|
return envConfigSecretArray.includes(k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-01-26 22:59:32 +00:00
|
|
|
/**
|
|
|
|
* parseConfig reads config from the source of truth, the environment.
|
|
|
|
* config must always be read this way because automation api introduces
|
|
|
|
* new program lifetime semantics where program lifetime != module lifetime.
|
|
|
|
*/
|
Do not lazy initialize config or settings
The pulumi runtime used to lazily load and parse both config and
settings data set by the language host. The initial reason for this
design was that we wanted the runtime to be usable in a normal node
environment, but we have moved away from supporting that.
In addition, while we claimed we loaded these value "lazily", we
actually forced their loading quite eagerly when we started
up. However, when capturing config (or settings, as we now do), we
would capture all the logic about loading these values from the
environment.
Even worse, in the case where you had two copies of @pulumi/pulumi
loaded, it would be possible to capture a config object which was not
initialized and then at runtime the initialization logic would try to
read PULUMI_CONFIG from the process environment and fail.
So we adopt a new model where configuration and settings are parsed as
we load their containing modules. In addition, to support SxS
scinerios, we continue to use `process.env` as a way to control both
configuration and settings. This means that `run.ts` must now ensure
that these values are present in the environment before either the
config or runtime modules have been loaded.
2018-08-03 22:33:15 +00:00
|
|
|
function parseConfig() {
|
2022-09-01 18:39:09 +00:00
|
|
|
const { config } = getStore();
|
2023-04-28 22:27:10 +00:00
|
|
|
const parsedConfig: { [key: string]: string } = {};
|
2022-09-01 18:39:09 +00:00
|
|
|
const envConfig = config[configEnvKey];
|
Do not lazy initialize config or settings
The pulumi runtime used to lazily load and parse both config and
settings data set by the language host. The initial reason for this
design was that we wanted the runtime to be usable in a normal node
environment, but we have moved away from supporting that.
In addition, while we claimed we loaded these value "lazily", we
actually forced their loading quite eagerly when we started
up. However, when capturing config (or settings, as we now do), we
would capture all the logic about loading these values from the
environment.
Even worse, in the case where you had two copies of @pulumi/pulumi
loaded, it would be possible to capture a config object which was not
initialized and then at runtime the initialization logic would try to
read PULUMI_CONFIG from the process environment and fail.
So we adopt a new model where configuration and settings are parsed as
we load their containing modules. In addition, to support SxS
scinerios, we continue to use `process.env` as a way to control both
configuration and settings. This means that `run.ts` must now ensure
that these values are present in the environment before either the
config or runtime modules have been loaded.
2018-08-03 22:33:15 +00:00
|
|
|
if (envConfig) {
|
2023-04-28 22:27:10 +00:00
|
|
|
const envObject: { [key: string]: string } = JSON.parse(envConfig);
|
Do not lazy initialize config or settings
The pulumi runtime used to lazily load and parse both config and
settings data set by the language host. The initial reason for this
design was that we wanted the runtime to be usable in a normal node
environment, but we have moved away from supporting that.
In addition, while we claimed we loaded these value "lazily", we
actually forced their loading quite eagerly when we started
up. However, when capturing config (or settings, as we now do), we
would capture all the logic about loading these values from the
environment.
Even worse, in the case where you had two copies of @pulumi/pulumi
loaded, it would be possible to capture a config object which was not
initialized and then at runtime the initialization logic would try to
read PULUMI_CONFIG from the process environment and fail.
So we adopt a new model where configuration and settings are parsed as
we load their containing modules. In addition, to support SxS
scinerios, we continue to use `process.env` as a way to control both
configuration and settings. This means that `run.ts` must now ensure
that these values are present in the environment before either the
config or runtime modules have been loaded.
2018-08-03 22:33:15 +00:00
|
|
|
for (const k of Object.keys(envObject)) {
|
|
|
|
parsedConfig[cleanKey(k)] = envObject[k];
|
2017-10-12 01:41:52 +00:00
|
|
|
}
|
|
|
|
}
|
Do not lazy initialize config or settings
The pulumi runtime used to lazily load and parse both config and
settings data set by the language host. The initial reason for this
design was that we wanted the runtime to be usable in a normal node
environment, but we have moved away from supporting that.
In addition, while we claimed we loaded these value "lazily", we
actually forced their loading quite eagerly when we started
up. However, when capturing config (or settings, as we now do), we
would capture all the logic about loading these values from the
environment.
Even worse, in the case where you had two copies of @pulumi/pulumi
loaded, it would be possible to capture a config object which was not
initialized and then at runtime the initialization logic would try to
read PULUMI_CONFIG from the process environment and fail.
So we adopt a new model where configuration and settings are parsed as
we load their containing modules. In addition, to support SxS
scinerios, we continue to use `process.env` as a way to control both
configuration and settings. This means that `run.ts` must now ensure
that these values are present in the environment before either the
config or runtime modules have been loaded.
2018-08-03 22:33:15 +00:00
|
|
|
|
|
|
|
return parsedConfig;
|
2017-10-12 01:41:52 +00:00
|
|
|
}
|
|
|
|
|
2021-01-26 22:59:32 +00:00
|
|
|
/**
|
|
|
|
* persistConfig writes config to the environment.
|
|
|
|
* config changes must always be persisted to the environment because automation api introduces
|
|
|
|
* new program lifetime semantics where program lifetime != module lifetime.
|
|
|
|
*/
|
2023-04-28 22:27:10 +00:00
|
|
|
function persistConfig(config: { [key: string]: string }, secretKeys?: string[]) {
|
2022-09-01 18:39:09 +00:00
|
|
|
const store = getStore();
|
2021-01-26 22:59:32 +00:00
|
|
|
const serializedConfig = JSON.stringify(config);
|
2021-05-18 16:48:08 +00:00
|
|
|
const serializedSecretKeys = Array.isArray(secretKeys) ? JSON.stringify(secretKeys) : "[]";
|
2022-09-01 18:39:09 +00:00
|
|
|
store.config[configEnvKey] = serializedConfig;
|
|
|
|
store.config[configSecretKeysEnvKey] = serializedSecretKeys;
|
2021-01-26 22:59:32 +00:00
|
|
|
}
|
|
|
|
|
2017-10-12 01:41:52 +00:00
|
|
|
/**
|
2018-07-31 15:37:46 +00:00
|
|
|
* cleanKey takes a configuration key, and if it is of the form "<string>:config:<string>" removes
|
|
|
|
* the ":config:" portion. Previously, our keys always had the string ":config:" in them, and we'd
|
|
|
|
* like to remove it. However, the language host needs to continue to set it so we can be compatible
|
|
|
|
* with older versions of our packages. Once we stop supporting older packages, we can change the
|
|
|
|
* language host to not add this :config: thing and remove this function.
|
2017-10-12 01:41:52 +00:00
|
|
|
*/
|
2018-03-02 19:36:07 +00:00
|
|
|
function cleanKey(key: string): string {
|
|
|
|
const idx = key.indexOf(":");
|
|
|
|
|
|
|
|
if (idx > 0 && key.startsWith("config:", idx + 1)) {
|
|
|
|
return key.substring(0, idx) + ":" + key.substring(idx + 1 + "config:".length);
|
2017-10-12 01:41:52 +00:00
|
|
|
}
|
2018-03-02 19:36:07 +00:00
|
|
|
|
|
|
|
return key;
|
Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.
This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.
The new structure is that within the sdk/ directory we will have a client
library per language. This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor. This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.
Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system. This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.
These new interfaces are surprisingly simple. There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.
The overall orchestration goes as follows:
1) Lumi decides it needs to run a program written in language X, so
it dynamically loads the language runtime plugin for language X.
2) Lumi passes that runtime a loopback address to its ResourceMonitor
service, while language X will publish a connection back to its
LanguageRuntime service, which Lumi will talk to.
3) Lumi then invokes LanguageRuntime.Run, passing information like
the desired working directory, program name, arguments, and optional
configuration variables to make available to the program.
4) The language X runtime receives this, unpacks it and sets up the
necessary context, and then invokes the program. The program then
calls into Lumi object model abstractions that internally communicate
back to Lumi using the ResourceMonitor interface.
5) The key here is ResourceMonitor.NewResource, which Lumi uses to
serialize state about newly allocated resources. Lumi receives these
and registers them as part of the plan, doing the usual diffing, etc.,
to decide how to proceed. This interface is perhaps one of the
most subtle parts of the new design, as it necessitates the use of
promises internally to allow parallel evaluation of the resource plan,
letting dataflow determine the available concurrency.
6) The program exits, and Lumi continues on its merry way. If the program
fails, the RunResponse will include information about the failure.
Due to (5), all properties on resources are now instances of a new
Property<T> type. A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties. Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one. In all cases, the Property<T> does not "settle"
until its final state is known. This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve). As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).
Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished. The remaining
work primarily boils down to three things:
1) Wiring all of this up to the Lumi code.
2) Fixing the handful of known loose ends required to make this work,
primarily around the serialization of properties (waiting on
unresolved ones, serializing assets properly, etc).
3) Implementing lambda closure serialization as a native extension.
This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 19:07:54 +00:00
|
|
|
}
|