pulumi/pkg/graph/topsort.go

57 lines
1.9 KiB
Go
Raw Normal View History

2018-05-22 19:43:36 +00:00
// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package graph
import (
"errors"
)
Begin resource modeling and planning This change introduces a new package, pkg/resource, that will form the foundation for actually performing deployment plans and applications. It contains the following key abstractions: * resource.Provider is a wrapper around the CRUD operations exposed by underlying resource plugins. It will eventually defer to resource.Plugin, which itself defers -- over an RPC interface -- to the actual plugin, one per package exposing resources. The provider will also understand how to load, cache, and overall manage the lifetime of each plugin. * resource.Resource is the actual resource object. This is created from the overall evaluation object graph, but is simplified. It contains only serializable properties, for example. Inter-resource references are translated into serializable monikers as part of creating the resource. * resource.Moniker is a serializable string that uniquely identifies a resource in the Mu system. This is in contrast to resource IDs, which are generated by resource providers and generally opaque to the Mu system. See marapongo/mu#69 for more information about monikers and some of their challenges (namely, designing a stable algorithm). * resource.Snapshot is a "snapshot" taken from a graph of resources. This is a transitive closure of state representing one possible configuration of a given environment. This is what plans are created from. Eventually, two snapshots will be diffable, in order to perform incremental updates. One way of thinking about this is that a snapshot of the old world's state is advanced, one step at a time, until it reaches a desired snapshot of the new world's state. * resource.Plan is a plan for carrying out desired CRUD operations on a target environment. Each plan consists of zero-to-many Steps, each of which has a CRUD operation type, a resource target, and a next step. This is an enumerator because it is possible the plan will evolve -- and introduce new steps -- as it is carried out (hence, the Next() method). At the moment, this is linearized; eventually, we want to make this more "graph-like" so that we can exploit available parallelism within the dependencies. There are tons of TODOs remaining. However, the `mu plan` command is functioning with these new changes -- including colorization FTW -- so I'm landing it now. This is part of marapongo/mu#38 and marapongo/mu#41.
2017-02-17 20:31:48 +00:00
// Topsort topologically sorts the graph, yielding an array of nodes that are in dependency order, using a simple
// DFS-based algorithm. The graph must be acyclic, otherwise this function will return an error.
Begin resource modeling and planning This change introduces a new package, pkg/resource, that will form the foundation for actually performing deployment plans and applications. It contains the following key abstractions: * resource.Provider is a wrapper around the CRUD operations exposed by underlying resource plugins. It will eventually defer to resource.Plugin, which itself defers -- over an RPC interface -- to the actual plugin, one per package exposing resources. The provider will also understand how to load, cache, and overall manage the lifetime of each plugin. * resource.Resource is the actual resource object. This is created from the overall evaluation object graph, but is simplified. It contains only serializable properties, for example. Inter-resource references are translated into serializable monikers as part of creating the resource. * resource.Moniker is a serializable string that uniquely identifies a resource in the Mu system. This is in contrast to resource IDs, which are generated by resource providers and generally opaque to the Mu system. See marapongo/mu#69 for more information about monikers and some of their challenges (namely, designing a stable algorithm). * resource.Snapshot is a "snapshot" taken from a graph of resources. This is a transitive closure of state representing one possible configuration of a given environment. This is what plans are created from. Eventually, two snapshots will be diffable, in order to perform incremental updates. One way of thinking about this is that a snapshot of the old world's state is advanced, one step at a time, until it reaches a desired snapshot of the new world's state. * resource.Plan is a plan for carrying out desired CRUD operations on a target environment. Each plan consists of zero-to-many Steps, each of which has a CRUD operation type, a resource target, and a next step. This is an enumerator because it is possible the plan will evolve -- and introduce new steps -- as it is carried out (hence, the Next() method). At the moment, this is linearized; eventually, we want to make this more "graph-like" so that we can exploit available parallelism within the dependencies. There are tons of TODOs remaining. However, the `mu plan` command is functioning with these new changes -- including colorization FTW -- so I'm landing it now. This is part of marapongo/mu#38 and marapongo/mu#41.
2017-02-17 20:31:48 +00:00
func Topsort(g Graph) ([]Vertex, error) {
var sorted []Vertex // will hold the sorted vertices.
visiting := make(map[Vertex]bool) // temporary entries to detect cycles.
visited := make(map[Vertex]bool) // entries to avoid visiting the same node twice.
// Now enumerate the roots, topologically sorting their dependencies.
roots := g.Roots()
for _, r := range roots {
if err := topvisit(r.To(), &sorted, visiting, visited); err != nil {
return sorted, err
}
}
return sorted, nil
}
func topvisit(n Vertex, sorted *[]Vertex, visiting map[Vertex]bool, visited map[Vertex]bool) error {
if visiting[n] {
// This is not a DAG! Stop sorting right away, and issue an error.
// IDEA: return diagnostic information about why this isn't a DAG (e.g., full cycle path).
return errors.New("Graph is not a DAG")
}
if !visited[n] {
visiting[n] = true
for _, m := range n.Outs() {
if err := topvisit(m.To(), sorted, visiting, visited); err != nil {
return err
}
}
visited[n] = true
visiting[n] = false
*sorted = append(*sorted, n)
}
return nil
}