After internal discussion, we determined "smoke" is a misleading
adjective for this category of tests. What we called "smoke tests"
are short integration tests for basic cross-platform functionality.
As a result, these are better named "acceptance" tests, since smoke
tests are intended to be a low water mark at the unit level to sniff
out bigger issues with the build as a whole.
* Make `async:true` the default for `invoke` calls (#3750)
* Switch away from native grpc impl. (#3728)
* Remove usage of the 'deasync' library from @pulumi/pulumi. (#3752)
* Only retry as long as we get unavailable back. Anything else continues. (#3769)
* Handle all errors for now. (#3781)
* Do not assume --yes was present when using pulumi in non-interactive mode (#3793)
* Upgrade all paths for sdk and pkg to v2
* Backport C# invoke classes and other recent gen changes (#4288)
Adjust C# generation
* Replace IDeployment with a sealed class (#4318)
Replace IDeployment with a sealed class
* .NET: default to args subtype rather than Args.Empty (#4320)
* Adding system namespace for Dotnet code gen
This is required for using Obsolute attributes for deprecations
```
Iam/InstanceProfile.cs(142,10): error CS0246: The type or namespace name 'ObsoleteAttribute' could not be found (are you missing a using directive or an assembly reference?) [/Users/stack72/code/go/src/github.com/pulumi/pulumi-aws/sdk/dotnet/Pulumi.Aws.csproj]
Iam/InstanceProfile.cs(142,10): error CS0246: The type or namespace name 'Obsolete' could not be found (are you missing a using directive or an assembly reference?) [/Users/stack72/code/go/src/github.com/pulumi/pulumi-aws/sdk/dotnet/Pulumi.Aws.csproj]
```
* Fix the nullability of config type properties in C# codegen (#4379)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
Set the following compiler defaults:
```
"target": "es6",
"module": "commonjs",
"moduleResolution": "node",
"sourceMap": true,
```
Which allows us to not even include a tsconfig.json file. If one is
present, `ts-node` will use its options, but the above settings will
override any settings in a local tsconfig.json file. This means if you
want full control over the target, you'll need to go back to the raw
tsc workflow where you explicitly build ahead of time.
We retain a few tests on the RunBuild plan, with `typescript` set to
false in the runtime options, but for the general case, we remove the
build steps and custom entry points for our programs.
Tests now target managed stacks instead of local stacks.
The existing logged in user and target backend API are used unless PULUMI_ACCES_TOKEN is defined, in which case tests are run under that access token and against the PULUMI_API backend.
For developer machines, we will now need to be logged in to Pulumi to run tests, and whichever default API backend is logged in (the one listed as current in ~/.pulumi/credentials.json) will be used. If you need to override these, provide PULUMI_ACCESS_TOKEN and possibly PULUMI_API.
For Travis, we currently target the staging service using the Pulumi Bot user.
We have decided to run tests in the pulumi organization. This can be overridden for local testing (or in Travis in the future) by defining PULUMI_API_OWNER_ORGANIZATION and using an access token with access to that organization.
Part of pulumi/home#195.
In order to begin publishing our core SDK package to NPM, we will
need it to be underneath the @pulumi scope so that it may remain
private. Eventually, we can alias pulumi back to it.
This is part of pulumi/pulumi#915.
This change implements resource protection, as per pulumi/pulumi#689.
The overall idea is that a resource can be marked as "protect: true",
which will prevent deletion of that resource for any reason whatsoever
(straight deletion, replacement, etc). This is expressed in the
program. To "unprotect" a resource, one must perform an update setting
"protect: false", and then afterwards, they can delete the resource.
For example:
let res = new MyResource("precious", { .. }, { protect: true });
Afterwards, the resource will display in the CLI with a lock icon, and
any attempts to remove it will fail in the usual ways (in planning or,
worst case, during an actual update).
This was done by adding a new ResourceOptions bag parameter to the
base Resource types. This is unfortunately a breaking change, but now
is the right time to take this one. We had been adding new settings
one by one -- like parent and dependsOn -- and this new approach will
set us up to add any number of additional settings down the road,
without needing to worry about breaking anything ever again.
This is related to protected stacks, as described in
pulumi/pulumi-service#399. Most likely this will serve as a foundational
building block that enables the coarser grained policy management.