This commit reverts most of #1853 and replaces it with functionally
identical logic, using the notion of status message-specific sinks.
In other words, where the original commit implemented ephemeral status
messages by adding an `isStatus` parameter to most of the logging
methdos in pulumi/pulumi, this implements ephemeral status messages as a
parallel logging sink, which emits _only_ ephemeral status messages.
The original commit message in that PR was:
> Allow log events to be marked "status" events
>
> This commit will introduce a field, IsStatus to LogRequest. A "status"
> logging event will be displayed in the Info column of the main
> display, but will not be printed out at the end, when resource
> operations complete.
>
> For example, for complex resource initialization, we'd like to display
> a series of intermediate results: [1/4] Service object created, for
> example. We'd like these to appear in the Info column, but not at the
> end, where they are not helpful to the user.
* Show a better error message when decrypting fails
It is most often the case that failing to decrypt a secret implies that
the secret was transferred from one stack to another via copying the
configuration. This commit introduces a better error message for this
case and instructs users to explicitly re-encrypt their encrypted keys
in the context of the new stack.
* Spelling
* CR: Grammar fixes
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.
### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.
These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
or unknown properties. This is necessary because existing plugins
only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
values are known or "must replace" if any configuration value is
unknown. The justification for this behavior is given
[here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
configures the provider plugin if all config values are known. If any
config value is unknown, the underlying plugin is not configured and
the provider may only perform `Check`, `Read`, and `Invoke`, all of
which return empty results. We justify this behavior becuase it is
only possible during a preview and provides the best experience we
can manage with the existing gRPC interface.
### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.
All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.
Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.
### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
provider plugins. It must be possible to add providers from a stack's
checkpoint to this map and to register new/updated providers during
the execution of a plan in response to CRUD operations on provider
resources.
- In order to support updating existing stacks using existing Pulumi
programs that may not explicitly instantiate providers, the engine
must be able to manage the "default" providers for each package
referenced by a checkpoint or Pulumi program. The configuration for
a "default" provider is taken from the stack's configuration data.
The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").
The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.
During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.
While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.
### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
a particular provider instance to manage a `CustomResource`'s CRUD
operations.
- A new type, `InvokeOptions`, can be used to specify options that
control the behavior of a call to `pulumi.runtime.invoke`. This type
includes a `provider` field that is analogous to
`ResourceOptions.provider`.
In pulumi/pulumi#1356, we observed that we can fail during a destroy
because we attempt to load the language plugin, which now eagerly looks
for the @pulumi/pulumi package.
This is also blocking ingestion of the latest engine bits into the PPC.
It turns out that for destroy (and refresh), we have no need for the
language plugin. So, let's skip loading it when appropriate.
I found the flag --force to be a strange name for skipping a preview,
since that name is usually reserved for operations that might be harmful
and yet you're coercing a tool to do it anyway, knowing there's a chance
you're going to shoot yourself in the foot.
I also found that what I almost always want in the situation where
--force was being used is to actually just run a preview and have the
confirmation auto-accepted. Going straight to --force isn't the right
thing in a CI scenario, where you actually want to run a preview first,
just to ensure there aren't any issues, before doing the update.
In a sense, there are four options here:
1. Run a preview, ask for confirmation, then do an update (the default).
2. Run a preview, auto-accept, and then do an update (the CI scenario).
3. Just run a preview with neither a confirmation nor an update (dry run).
4. Just do an update, without performing a preview beforehand (rare).
This change enables all four workflows in our CLI.
Rather than have an explosion of flags, we have a single flag,
--preview, which can specify the mode that we're operating in. The
following are the values which correlate to the above four modes:
1. "": default (no --preview specified)
2. "auto": auto-accept preview confirmation
3. "only": only run a preview, don't confirm or update
4. "skip": skip the preview altogether
As part of this change, I redid a bit of how the preview modes
were specified. Rather than booleans, which had some illegal
combinations, this change introduces a new enum type. Furthermore,
because the engine is wholly ignorant of these flags -- and only the
backend understands them -- it was confusing to me that
engine.UpdateOptions stored this flag, especially given that all
interesting engine options _also_ accepted a dryRun boolean. As of
this change, the backend.PreviewBehavior controls the preview options.
* Re-introduce interface for snapshot management
Snapshot management was done through the Update interface; this commit
splits it into a separate interface
* Put the SnapshotManager instance onto the engine context
* Remove SnapshotManager from planContext and updateActions now that it can be accessed by engine Context
hese changes plumb basic support for cancellation through the engine.
Two types of cancellation are supported for all engine operations:
- Cancellation, which waits for the operation to drive itself to a safe
point before the operation returns, and
- Termination, which does not wait for the operation to drive itself
to a safe opint for the operation returns.
When updating local or managed stacks, a single ^C triggers cancellation
of any running operation; a second ^C will trigger termination.
Fixes#513, #1077.
* Lift snapshot management out of the engine
This PR is a prerequisite for parallelism by addressing a major problem
that the engine has to deal with when performing parallel resource
construction: parallel mutation of the global snapshot. This PR adds
a `SnapshotManager` type that is responsible for maintaining and
persisting the current resource snapshot. It serializes all reads and
writes to the global snapshot and persists the snapshot to persistent
storage upon every write.
As a side-effect of this, the core engine no longer needs to know about
snapshot management at all; all snapshot operations can be handled as
callbacks on deployment events. This will greatly simplify the
parallelization of the core engine.
Worth noting is that the core engine will still need to be able to read
the current snapshot, since it is interested in the dependency graphs
contained within. The full implications of that are out of scope of this
PR.
Remove dead code, Steps no longer need a reference to the plan iterator that created them
Fixing various issues that arise when bringing up pulumi-aws
Line length broke the build
Code review: remove dead field, fix yaml name error
Rebase against master, provide implementation of StackPersister for cloud backend
Code review feedback: comments on MutationStatus, style in snapshot.go
Code review feedback: move SnapshotManager to pkg/backend, change engine to use an interface SnapshotManager
Code review feedback: use a channel for synchronization
Add a comment and a new test
* Maintain two checkpoints, an immutable base and a mutable delta, and
periodically merge the two to produce snapshots
* Add a lot of tests - covers all of the non-error paths of BeginMutation and End
* Fix a test resource provider
* Add a few tests, fix a few issues
* Rebase against master, fixed merge
This change includes a bunch of refactorings I made in prep for
doing refresh (first, the command, see pulumi/pulumi#1081):
* The primary change is to change the way the engine's core update
functionality works with respect to deploy.Source. This is the
way we can plug in new sources of resource information during
planning (and, soon, diffing). The way I intend to model refresh
is by having a new kind of source, deploy.RefreshSource, which
will let us do virtually everything about an update/diff the same
way with refreshes, which avoid otherwise duplicative effort.
This includes changing the planOptions (nee deployOptions) to
take a new SourceFunc callback, which is responsible for creating
a source specific to the kind of plan being requested.
Preview, Update, and Destroy now are primarily differentiated by
the kind of deploy.Source that they return, rather than sprinkling
things like `if Destroying` throughout. This tidies up some logic
and, more importantly, gives us precisely the refresh hook we need.
* Originally, we used the deploy.NullSource for Destroy operations.
This simply returns nothing, which is how Destroy works. For some
reason, we were no longer doing this, and instead had some
`if Destroying` cases sprinkled throughout the deploy.EvalSource.
I think this is a vestige of some old way we did configuration, at
least judging by a comment, which is apparently no longer relevant.
* Move diff and diff-printing logic within the engine into its own
pkg/engine/diff.go file, to prepare for upcoming work.
* I keep noticing benign diffs anytime I regenerate protobufs. I
suspect this is because we're also on different versions. I changed
generate.sh to also dump the version into grpc_version.txt. At
least we can understand where the diffs are coming from, decide
whether to take them (i.e., a newer version), and ensure that as
a team we are monotonically increasing, and not going backwards.
* I also tidied up some tiny things I noticed while in there, like
comments, incorrect types, lint suppressions, and so on.
When a stack has secrets, we now take the secret values and construct
a regular expression which is just an alternation of all the secret
values. Then, before pushing any string data into an Event, we run the
regular expression and replace all matches with '[secret]'.
Fixes#747
The existing logic would flow colorization information into the
engine, so depending on the settings in the CLI, the engine may or may
not have emitted colorized events. This coupling is not great and we
want to start moving to a world where the presentation happens
exclusively at the CLI level.
With this change, the engine will always produce strings that have the
colorization formatting directives (i.e. the directives that
reconquest/loreley understands) and the CLI will apply
colorization (which could mean either running loreley to turn the
directives into ANSI escape codes, or drop them or retain them, for
debuging purposes).
Fixes#742
This PR surfaces the configuration options available to updates, previews, and destroys to the Pulumi Service. As part of this I refactored the options to unify them into a single `engine.UpdateOptions`, since they were all overlapping to various degrees.
With this PR we are adding several new flags to commands, e.g. `--summary` was not available on `pulumi destroy`.
There are also a few minor breaking changes.
- `pulumi destroy --preview` is now `pulumi destroy --dry-run` (to match the actual name of the field).
- The default behavior for "--color" is now `Always`. Previously it was `Always` or `Never` based on the value of a `--debug` flag. (You can specify `--color always` or `--color never` to get the exact behavior.)
Fixes#515, and cleans up the code making some other features slightly easier to add.
These changes refactor the engine's entrypoints--Deploy, Destroy, and
Preview--to be update-centric rather than stack-centric. Each of these
methods now takes a value of a new type, Update, that abstracts away the
vagaries of fetching and maintaining the update's state. This
refactoring also reinforces Pulumi.yaml as a CLI concept rather than an
engine concept; the CLI is now the only reader/writer of this format.
These changes will smooth the way for a few refactorings on the service
side that will aid in update isolation.
Our recent changes to colorization changed from a boolean to a tri-valued
enum (Always, Never, Raw). The events from the service, however, are still
boolean-valued. This changes the message payload to carry the full values.
Part of the work to make it easier to tests of diff output. Specifically, we now allow users to pass --color=option for several pulumi commands. 'option' can be one of 'always', 'never', 'raw', and 'auto' (the default).
The meaning of these flags are:
1. auto: colorize normally, unless in --debug
2. always: always colorize no matter what
3. never: never colorize no matter what.
4. raw: colorize, but preserve the original "<{%%}>" style control codes and not the translated platform specific codes. This is for testing purposes and ensures we can have test for this stuff across platform.
Adds OpenTracing in the Pulumi engine and plugin + langhost subprocesses.
We currently create a single root span for any `Enging.plan` operation - which is a single `preview`, `update`, `destroy`, etc.
The only sub-spans we currently create are at gRPC boundaries, both on the client and server sides and on both the langhost and provider plugin interfaces.
We could extend this to include spans for any other semantically meaningful sections of compute inside the engine, though initial examples show we get pretty good granularity of coverage by focusing on the gRPC boundaries.
In the future, this should be easily extensible to HTTP boundaries and to track other bulky I/O like datastore read/writes once we hook up to the PPC and Pulumi Cloud.
We expose a `--trace <endpoint>` option to enable tracing on the CLI, which we will aim to thread through to subprocesses.
We currently support sending tracing data to a Zipkin-compatible endpoint. This has been validated with both Zipkin and Jaeger UIs.
We do not yet have any tracing inside the TypeScript side of the JS langhost RPC interface. There is not yet automatic gRPC OpenTracing instrumentation (though it looks like it's in progress now) - so we would need to manually create meaningful spans on that side of the interface.
The event diagnostic goroutines could error out sometimes during
early program exits, due to a race between the goroutine writing to
the channel and the early exiting goroutine which closed the channel.
This change stops closing the channels entirely on the abrupt exit
paths, since it's not necessary and we want to exit immediately.
Previously we used the word "Environment" as the term for a deployment
target, but since then we've started to use the term Stack. Adopt this
across the CLI.
From a user's point of view, there are a few changes:
1. The `env` verb has been renamed to `stack`
2. The `-e` and `--env` options to commands which operate on an
environment now take `-s` or `--stack` instead.
3. Becase of (2), the commands that used `-s` to display a summary now
only support passing the full option name (`--summary`).
On the local file system, we still store checkpoint data in the `env`
sub-folder under `.pulumi` (so we can reuse existing checkpoint files
that were written to the old folder)
Previously, the engine would write to io.Writer's to display output.
When hosted in `pulumi` these writers were tied to os.Stdout and
os.Stderr, but other applications hosting the engine could send them
other places (e.g. a log to be sent to an another application later).
While much better than just using the ambient streams, this was still
not the best. It would be ideal if the engine could just emit strongly
typed events and whatever is hosting the engine could care about
displaying them.
As a first step down that road, we move to a model where operations on
the engine now take a `chan engine.Event` and during the course of the
operation, events are written to this channel. It is the
responsibility of the caller of the method to read from the channel
until it is closed (singifying that the operation is complete).
The events we do emit are still intermingle presentation with data,
which is unfortunate, but can be improved over time. Most of the
events today are just colorized in the client and printed to stdout or
stderr without much thought.
Previously, the engine was concered with maintaing information about
the currently active environment. Now, the CLI is in charge of
this. As part of this change, the engine can now assume that every
environment has a non empty name (and I've added asserts on the
entrypoints of the engine API to ensure that any consumer of the
engine passes a non empty environment name)
This includes a few changes:
* The repo name -- and hence the Go modules -- changes from pulumi-fabric to pulumi.
* The Node.js SDK package changes from @pulumi/pulumi-fabric to just pulumi.
* The CLI is renamed from lumi to pulumi.
This change flips the polarity on parallelism: rather than having a
--serialize flag, we will have a --parallel=P flag, and by default
we will shut off parallelism. We aren't benefiting from it at the
moment (until we implement pulumi/pulumi-fabric#106), and there are
more hidden dependencies in places like AWS Lambdas and Permissions
than I had realized. We may revisit the default, but this allows
us to bite off the messiness of dependsOn only when we benefit from
it. And in any case, the --parallel=P capability will be useful.
This change adds an optiona dependsOn parameter to Resource constructors,
to "force" a fake dependency between resources. We have an extremely strong
desire to resort to using this only in unusual cases -- and instead rely
on the natural dependency DAG based on properties -- but experience in other
resource provisioning frameworks tells us that we're likely to need this in
the general case. Indeed, we've already encountered the need in AWS's
API Gateway resources... and I suspect we'll run into more especially as we
tackle non-serverless resources like EC2 Instances, where "ambient"
dependencies are far more commonplace.
This also makes parallelism the default mode of operation, and we have a
new --serialize flag that can be used to suppress this default behavior.
Full disclosure: I expect this to become more Make-like, i.e. -j 8, where
you can specify the precise width of parallelism, when we tackle
pulumi/pulumi-fabric#106. I also think there's a good chance we will flip
the default, so that serial execution is the default, so that developers
who don't benefit from the parallelism don't need to worry about dependsOn
in awkward ways. This tends to be the way most tools (like Make) operate.
This fixespulumi/pulumi-fabric#335.
This refactors the engine so all of the APIs on it are instance
methods on the type instead of raw methods that float around and use
data from a global engine.
A mechcanical change as we remove the global `E` and then make
anything that interacted with that in pkg/engine to be an instance
method and the dealing with the fallout.