pulumi/pkg/codegen/nodejs/gen_program.go

1263 lines
37 KiB
Go

// Copyright 2016-2020, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package nodejs
import (
"bytes"
"fmt"
"io"
"os"
"path"
"path/filepath"
"sort"
"strings"
"github.com/hashicorp/hcl/v2"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model/format"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/syntax"
"github.com/pulumi/pulumi/pkg/v3/codegen/pcl"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/sdk/v3/go/common/encoding"
"github.com/pulumi/pulumi/sdk/v3/go/common/slice"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/pulumi/pulumi/sdk/v3/go/common/workspace"
"github.com/zclconf/go-cty/cty"
)
const PulumiToken = "pulumi"
type generator struct {
// The formatter to use when generating code.
*format.Formatter
program *pcl.Program
diagnostics hcl.Diagnostics
asyncMain bool
configCreated bool
isComponent bool
}
func GenerateProgram(program *pcl.Program) (map[string][]byte, hcl.Diagnostics, error) {
pcl.MapProvidersAsResources(program)
// Linearize the nodes into an order appropriate for procedural code generation.
nodes := pcl.Linearize(program)
g := &generator{
program: program,
}
g.Formatter = format.NewFormatter(g)
packages, err := program.PackageSnapshots()
if err != nil {
return nil, nil, err
}
for _, p := range packages {
if err := p.ImportLanguages(map[string]schema.Language{"nodejs": Importer}); err != nil {
return nil, nil, err
}
}
var index bytes.Buffer
err = g.genPreamble(&index, program)
if err != nil {
return nil, nil, err
}
// used to track declared variables in the main program
// since outputs have identifiers which can conflict with other program nodes' identifiers
// we switch the entry point to async which allows for declaring arbitrary output names
declaredNodeIdentifiers := map[string]bool{}
for _, n := range nodes {
if g.asyncMain {
break
}
switch x := n.(type) {
case *pcl.Resource:
if resourceRequiresAsyncMain(x) {
g.asyncMain = true
}
declaredNodeIdentifiers[makeValidIdentifier(x.Name())] = true
case *pcl.ConfigVariable:
declaredNodeIdentifiers[makeValidIdentifier(x.Name())] = true
case *pcl.LocalVariable:
declaredNodeIdentifiers[makeValidIdentifier(x.Name())] = true
case *pcl.Component:
declaredNodeIdentifiers[makeValidIdentifier(x.Name())] = true
case *pcl.OutputVariable:
if outputRequiresAsyncMain(x) {
g.asyncMain = true
}
outputIdentifier := makeValidIdentifier(x.Name())
if _, alreadyDeclared := declaredNodeIdentifiers[outputIdentifier]; alreadyDeclared {
g.asyncMain = true
}
}
}
indenter := func(f func()) { f() }
if g.asyncMain {
indenter = g.Indented
g.Fgenf(&index, "export = async () => {\n")
}
indenter(func() {
for _, n := range nodes {
g.genNode(&index, n)
}
if g.asyncMain {
var result *model.ObjectConsExpression
for _, n := range nodes {
if o, ok := n.(*pcl.OutputVariable); ok {
if result == nil {
result = &model.ObjectConsExpression{}
}
name := o.LogicalName()
result.Items = append(result.Items, model.ObjectConsItem{
Key: &model.LiteralValueExpression{Value: cty.StringVal(name)},
Value: g.lowerExpression(o.Value, o.Type()),
})
}
}
if result != nil {
g.Fgenf(&index, "%sreturn %v;\n", g.Indent, result)
}
}
})
if g.asyncMain {
g.Fgenf(&index, "}\n")
}
files := map[string][]byte{
"index.ts": index.Bytes(),
}
for componentDir, component := range program.CollectComponents() {
componentFilename := filepath.Base(componentDir)
componentName := component.DeclarationName()
componentGenerator := &generator{
program: component.Program,
isComponent: true,
}
componentGenerator.Formatter = format.NewFormatter(componentGenerator)
var componentBuffer bytes.Buffer
componentGenerator.genComponentResourceDefinition(&componentBuffer, componentName, component)
files[componentFilename+".ts"] = componentBuffer.Bytes()
}
return files, g.diagnostics, nil
}
func GenerateProject(
directory string, project workspace.Project,
program *pcl.Program, localDependencies map[string]string,
) error {
files, diagnostics, err := GenerateProgram(program)
if err != nil {
return err
}
if diagnostics.HasErrors() {
return diagnostics
}
// Set the runtime to "nodejs" then marshal to Pulumi.yaml
project.Runtime = workspace.NewProjectRuntimeInfo("nodejs", nil)
projectBytes, err := encoding.YAML.Marshal(project)
if err != nil {
return err
}
files["Pulumi.yaml"] = projectBytes
// The local dependencies map is a map of package name to the path to the package, the path could be
// absolute or a relative path but we want to ensure we emit relative paths in the package.json.
for k, v := range localDependencies {
absPath := v
if !filepath.IsAbs(v) {
absPath, err = filepath.Abs(v)
if err != nil {
return fmt.Errorf("absolute path of %s: %w", v, err)
}
}
relPath, err := filepath.Rel(directory, absPath)
if err != nil {
return fmt.Errorf("relative path of %s from %s: %w", absPath, directory, err)
}
localDependencies[k] = relPath
}
// Build the package.json
var packageJSON bytes.Buffer
fmt.Fprintf(&packageJSON, `{
"name": "%s",
"devDependencies": {
"@types/node": "^14"
},
"dependencies": {
"typescript": "^4.0.0",
`, project.Name.String())
// Check if pulumi is a local dependency, else add it as a normal range dependency
if pulumiArtifact, has := localDependencies[PulumiToken]; has {
fmt.Fprintf(&packageJSON, `"@pulumi/pulumi": "%s"`, pulumiArtifact)
} else {
fmt.Fprintf(&packageJSON, `"@pulumi/pulumi": "^3.0.0"`)
}
// For each package add a dependency line
packages, err := program.CollectNestedPackageSnapshots()
if err != nil {
return err
}
for _, p := range packages {
if p.Name == PulumiToken {
continue
}
if err := p.ImportLanguages(map[string]schema.Language{"nodejs": Importer}); err != nil {
return err
}
packageName := "@pulumi/" + p.Name
err := p.ImportLanguages(map[string]schema.Language{"nodejs": Importer})
if err != nil {
return err
}
if langInfo, found := p.Language["nodejs"]; found {
nodeInfo, ok := langInfo.(NodePackageInfo)
if ok && nodeInfo.PackageName != "" {
packageName = nodeInfo.PackageName
}
}
dependencyTemplate := ",\n \"%s\": \"%s\""
if path, has := localDependencies[p.Name]; has {
fmt.Fprintf(&packageJSON, dependencyTemplate, packageName, path)
} else {
if p.Version != nil {
fmt.Fprintf(&packageJSON, dependencyTemplate, packageName, p.Version.String())
} else {
fmt.Fprintf(&packageJSON, dependencyTemplate, packageName, "*")
}
}
}
packageJSON.WriteString(`
}
}`)
files["package.json"] = packageJSON.Bytes()
// Add the language specific .gitignore
files[".gitignore"] = []byte(`/bin/
/node_modules/`)
// Add the basic tsconfig
var tsConfig bytes.Buffer
tsConfig.WriteString(`{
"compilerOptions": {
"strict": true,
"outDir": "bin",
"target": "es2016",
"module": "commonjs",
"moduleResolution": "node",
"sourceMap": true,
"experimentalDecorators": true,
"pretty": true,
"noFallthroughCasesInSwitch": true,
"noImplicitReturns": true,
"forceConsistentCasingInFileNames": true
},
"files": [
`)
fileNames := make([]string, 0, len(files))
for file := range files {
fileNames = append(fileNames, file)
}
sort.Strings(fileNames)
for i, file := range fileNames {
if strings.HasSuffix(file, ".ts") {
tsConfig.WriteString(" \"" + file + "\"")
lastFile := i == len(files)-1
if !lastFile {
tsConfig.WriteString(",\n")
} else {
tsConfig.WriteString("\n")
}
}
}
tsConfig.WriteString(` ]
}`)
files["tsconfig.json"] = tsConfig.Bytes()
for filename, data := range files {
outPath := path.Join(directory, filename)
err := os.WriteFile(outPath, data, 0o600)
if err != nil {
return fmt.Errorf("could not write output program: %w", err)
}
}
return nil
}
// genLeadingTrivia generates the list of leading trivia assicated with a given token.
func (g *generator) genLeadingTrivia(w io.Writer, token syntax.Token) {
// TODO(pdg): whitespace?
for _, t := range token.LeadingTrivia {
if c, ok := t.(syntax.Comment); ok {
g.genComment(w, c)
}
}
}
// genTrailingTrivia generates the list of trailing trivia assicated with a given token.
func (g *generator) genTrailingTrivia(w io.Writer, token syntax.Token) {
// TODO(pdg): whitespace
for _, t := range token.TrailingTrivia {
if c, ok := t.(syntax.Comment); ok {
g.genComment(w, c)
}
}
}
// genTrivia generates the list of trivia assicated with a given token.
func (g *generator) genTrivia(w io.Writer, token syntax.Token) {
g.genLeadingTrivia(w, token)
g.genTrailingTrivia(w, token)
}
// genComment generates a comment into the output.
func (g *generator) genComment(w io.Writer, comment syntax.Comment) {
for _, l := range comment.Lines {
g.Fgenf(w, "%s//%s\n", g.Indent, l)
}
}
type programImports struct {
importStatements []string
preambleHelperMethods codegen.StringSet
}
func (g *generator) collectProgramImports(program *pcl.Program) programImports {
importSet := codegen.NewStringSet("@pulumi/pulumi")
preambleHelperMethods := codegen.NewStringSet()
var componentImports []string
npmToPuPkgName := make(map[string]string)
for _, n := range program.Nodes {
switch n := n.(type) {
case *pcl.Resource:
pkg, _, _, _ := n.DecomposeToken()
if pkg == PulumiToken {
continue
}
pkgName := "@pulumi/" + pkg
if n.Schema != nil && n.Schema.PackageReference != nil {
def, err := n.Schema.PackageReference.Definition()
contract.AssertNoErrorf(err, "Should be able to retrieve definition for %s", n.Schema.Token)
if info, ok := def.Language["nodejs"].(NodePackageInfo); ok && info.PackageName != "" {
pkgName = info.PackageName
}
npmToPuPkgName[pkgName] = pkg
}
importSet.Add(pkgName)
case *pcl.Component:
componentDir := filepath.Base(n.DirPath())
componentName := n.DeclarationName()
importStatement := fmt.Sprintf("import { %s } from \"./%s\";", componentName, componentDir)
componentImports = append(componentImports, importStatement)
}
diags := n.VisitExpressions(nil, func(n model.Expression) (model.Expression, hcl.Diagnostics) {
if call, ok := n.(*model.FunctionCallExpression); ok {
if i := g.getFunctionImports(call); len(i) > 0 && i[0] != "" {
for _, importPackage := range i {
importSet.Add(importPackage)
}
}
if helperMethodBody, ok := getHelperMethodIfNeeded(call.Name, g.Indent); ok {
preambleHelperMethods.Add(helperMethodBody)
}
}
return n, nil
})
contract.Assertf(len(diags) == 0, "unexpected diagnostics: %v", diags)
}
sortedValues := importSet.SortedValues()
imports := slice.Prealloc[string](len(sortedValues))
for _, pkg := range sortedValues {
if pkg == "@pulumi/pulumi" {
continue
}
var as string
if puPkg, ok := npmToPuPkgName[pkg]; ok {
as = makeValidIdentifier(puPkg)
} else {
as = makeValidIdentifier(path.Base(pkg))
}
imports = append(imports, fmt.Sprintf("import * as %v from \"%v\";", as, pkg))
}
imports = append(imports, componentImports...)
sort.Strings(imports)
return programImports{
importStatements: imports,
preambleHelperMethods: preambleHelperMethods,
}
}
func (g *generator) genPreamble(w io.Writer, program *pcl.Program) error {
// Print the @pulumi/pulumi import at the top.
g.Fprintln(w, `import * as pulumi from "@pulumi/pulumi";`)
programImports := g.collectProgramImports(program)
// Now sort the imports and emit them.
for _, i := range programImports.importStatements {
g.Fprintln(w, i)
}
g.Fprint(w, "\n")
// If we collected any helper methods that should be added, write them just before the main func
for _, preambleHelperMethodBody := range programImports.preambleHelperMethods.SortedValues() {
g.Fprintf(w, "%s\n\n", preambleHelperMethodBody)
}
return nil
}
func componentElementType(pclType model.Type) string {
switch pclType {
case model.BoolType:
return "boolean"
case model.IntType, model.NumberType:
return "number"
case model.StringType:
return "string"
default:
switch pclType := pclType.(type) {
case *model.ListType:
elementType := componentElementType(pclType.ElementType)
return elementType + "[]"
case *model.MapType:
elementType := componentElementType(pclType.ElementType)
return fmt.Sprintf("Record<string, pulumi.Input<%s>>", elementType)
case *model.OutputType:
// something is already an output
// get only the element type because we are wrapping these in Output<T> anyway
return componentElementType(pclType.ElementType)
case *model.UnionType:
if len(pclType.ElementTypes) == 2 && pclType.ElementTypes[0] == model.NoneType {
return componentElementType(pclType.ElementTypes[1])
} else if len(pclType.ElementTypes) == 2 && pclType.ElementTypes[1] == model.NoneType {
return componentElementType(pclType.ElementTypes[0])
} else {
return "any"
}
default:
return "any"
}
}
}
func componentInputType(pclType model.Type) string {
elementType := componentElementType(pclType)
return fmt.Sprintf("pulumi.Input<%s>", elementType)
}
func componentOutputType(pclType model.Type) string {
elementType := componentElementType(pclType)
return fmt.Sprintf("pulumi.Output<%s>", elementType)
}
func (g *generator) genObjectTypedConfig(w io.Writer, objectType *model.ObjectType) {
attributeKeys := []string{}
for attributeKey := range objectType.Properties {
attributeKeys = append(attributeKeys, attributeKey)
}
// get deterministically sorted keys
sort.Strings(attributeKeys)
g.Fgenf(w, "{\n")
g.Indented(func() {
for _, attributeKey := range attributeKeys {
attributeType := objectType.Properties[attributeKey]
optional := "?"
g.Fgenf(w, "%s", g.Indent)
typeName := componentInputType(attributeType)
g.Fgenf(w, "%s%s: %s,\n", attributeKey, optional, typeName)
}
})
g.Fgenf(w, "%s}", g.Indent)
}
func (g *generator) genComponentResourceDefinition(w io.Writer, componentName string, component *pcl.Component) {
// Print the @pulumi/pulumi import at the top.
g.Fprintln(w, `import * as pulumi from "@pulumi/pulumi";`)
programImports := g.collectProgramImports(component.Program)
// Now sort the imports and emit them.
for _, i := range programImports.importStatements {
g.Fprintln(w, i)
}
g.Fprint(w, "\n")
// If we collected any helper methods that should be added, write them just before the main func
for _, preambleHelperMethodBody := range programImports.preambleHelperMethods.SortedValues() {
g.Fprintf(w, "%s\n\n", preambleHelperMethodBody)
}
configVars := component.Program.ConfigVariables()
if len(configVars) > 0 {
g.Fgenf(w, "interface %sArgs {\n", componentName)
g.Indented(func() {
for _, configVar := range configVars {
optional := "?"
if configVar.DefaultValue == nil {
optional = ""
}
if configVar.Description != "" {
g.Fgenf(w, "%s/**\n", g.Indent)
for _, line := range strings.Split(configVar.Description, "\n") {
g.Fgenf(w, "%s * %s\n", g.Indent, line)
}
g.Fgenf(w, "%s */\n", g.Indent)
}
g.Fgenf(w, "%s", g.Indent)
switch configVarType := configVar.Type().(type) {
case *model.ObjectType:
// generate {...}
g.Fgenf(w, "%s%s: ", configVar.Name(), optional)
g.genObjectTypedConfig(w, configVarType)
g.Fgen(w, ",\n")
case *model.ListType:
switch elementType := configVarType.ElementType.(type) {
case *model.ObjectType:
// generate {...}[]
g.Fgenf(w, "%s%s: ", configVar.Name(), optional)
g.genObjectTypedConfig(w, elementType)
g.Fgen(w, "[],\n")
default:
typeName := componentInputType(configVar.Type())
g.Fgenf(w, "%s%s: %s,\n", configVar.Name(), optional, typeName)
}
case *model.MapType:
switch elementType := configVarType.ElementType.(type) {
case *model.ObjectType:
// generate Record<string, {...}>
g.Fgenf(w, "%s%s: Record<string, ", configVar.Name(), optional)
g.genObjectTypedConfig(w, elementType)
g.Fgen(w, ">,\n")
default:
typeName := componentInputType(configVar.Type())
g.Fgenf(w, "%s%s: %s,\n", configVar.Name(), optional, typeName)
}
default:
typeName := componentInputType(configVar.Type())
g.Fgenf(w, "%s%s: %s,\n", configVar.Name(), optional, typeName)
}
}
})
g.Fgenf(w, "}\n\n")
}
outputs := component.Program.OutputVariables()
g.Fgenf(w, "export class %s extends pulumi.ComponentResource {\n", componentName)
g.Indented(func() {
for _, output := range outputs {
var outputType string
switch expr := output.Value.(type) {
case *model.ScopeTraversalExpression:
resource, ok := expr.Parts[0].(*pcl.Resource)
if ok && len(expr.Parts) == 1 {
pkg, module, memberName, diagnostics := resourceTypeName(resource)
g.diagnostics = append(g.diagnostics, diagnostics...)
if module != "" {
module = "." + module
}
qualifiedMemberName := fmt.Sprintf("%s%s.%s", pkg, module, memberName)
// special case: the output is a Resource type
outputType = fmt.Sprintf("pulumi.Output<%s>", qualifiedMemberName)
} else {
outputType = componentOutputType(expr.Type())
}
default:
outputType = componentOutputType(expr.Type())
}
g.Fgenf(w, "%s", g.Indent)
g.Fgenf(w, "public %s: %s;\n", output.Name(), outputType)
}
token := "components:index:" + componentName
if len(configVars) == 0 {
g.Fgenf(w, "%s", g.Indent)
g.Fgen(w, "constructor(name: string, opts?: pulumi.ComponentResourceOptions) {\n")
g.Indented(func() {
g.Fgenf(w, "%s", g.Indent)
g.Fgenf(w, "super(\"%s\", name, {}, opts);\n", token)
})
} else {
g.Fgenf(w, "%s", g.Indent)
argsTypeName := componentName + "Args"
g.Fgenf(w, "constructor(name: string, args: %s, opts?: pulumi.ComponentResourceOptions) {\n",
argsTypeName)
g.Indented(func() {
g.Fgenf(w, "%s", g.Indent)
g.Fgenf(w, "super(\"%s\", name, args, opts);\n", token)
})
}
// generate component resources and local variables
g.Indented(func() {
// assign default values to config inputs
for _, configVar := range configVars {
if configVar.DefaultValue != nil {
g.Fgenf(w, "%sargs.%s = args.%s || %v;\n",
g.Indent,
configVar.Name(),
configVar.Name(),
configVar.DefaultValue)
}
}
for _, node := range pcl.Linearize(component.Program) {
switch node := node.(type) {
case *pcl.LocalVariable:
g.genLocalVariable(w, node)
g.Fgen(w, "\n")
case *pcl.Component:
if node.Options == nil {
node.Options = &pcl.ResourceOptions{}
}
if node.Options.Parent == nil {
node.Options.Parent = model.ConstantReference(&model.Constant{
Name: "this",
})
}
g.genComponent(w, node)
g.Fgen(w, "\n")
case *pcl.Resource:
if node.Options == nil {
node.Options = &pcl.ResourceOptions{}
}
if node.Options.Parent == nil {
node.Options.Parent = model.ConstantReference(&model.Constant{
Name: "this",
})
}
g.genResource(w, node)
g.Fgen(w, "\n")
}
}
registeredOutputs := &model.ObjectConsExpression{}
for _, output := range outputs {
// assign the output fields
outputProperty := output.Name()
switch expr := output.Value.(type) {
case *model.ScopeTraversalExpression:
_, ok := expr.Parts[0].(*pcl.Resource)
if ok && len(expr.Parts) == 1 {
// special case: the output is a Resource type
g.Fgenf(w, "%sthis.%s = pulumi.output(%v);\n",
g.Indent, outputProperty,
g.lowerExpression(output.Value, output.Type()))
} else {
g.Fgenf(w, "%sthis.%s = %v;\n",
g.Indent, outputProperty,
g.lowerExpression(output.Value, output.Type()))
}
default:
g.Fgenf(w, "%sthis.%s = %v;\n",
g.Indent, outputProperty,
g.lowerExpression(output.Value, output.Type()))
}
// add the outputs to abject for registration
registeredOutputs.Items = append(registeredOutputs.Items, model.ObjectConsItem{
Key: &model.LiteralValueExpression{
Tokens: syntax.NewLiteralValueTokens(cty.StringVal(output.Name())),
Value: cty.StringVal(output.Name()),
},
Value: output.Value,
})
}
if len(outputs) == 0 {
g.Fgenf(w, "%sthis.registerOutputs();\n", g.Indent)
} else {
g.Fgenf(w, "%sthis.registerOutputs(%v);\n", g.Indent, registeredOutputs)
}
})
g.Fgenf(w, "%s}\n", g.Indent)
})
g.Fgen(w, "}\n")
}
func (g *generator) genNode(w io.Writer, n pcl.Node) {
switch n := n.(type) {
case *pcl.Resource:
g.genResource(w, n)
case *pcl.ConfigVariable:
g.genConfigVariable(w, n)
case *pcl.LocalVariable:
g.genLocalVariable(w, n)
case *pcl.OutputVariable:
g.genOutputVariable(w, n)
case *pcl.Component:
g.genComponent(w, n)
}
}
func resourceRequiresAsyncMain(r *pcl.Resource) bool {
if r.Options == nil || r.Options.Range == nil {
return false
}
return model.ContainsPromises(r.Options.Range.Type())
}
func outputRequiresAsyncMain(ov *pcl.OutputVariable) bool {
outputName := ov.LogicalName()
return makeValidIdentifier(outputName) != outputName
}
// resourceTypeName computes the NodeJS package, module, and type name for the given resource.
func resourceTypeName(r *pcl.Resource) (string, string, string, hcl.Diagnostics) {
// Compute the resource type from the Pulumi type token.
pcl.FixupPulumiPackageTokens(r)
pkg, module, member, diagnostics := r.DecomposeToken()
if r.Schema != nil {
module = moduleName(module, r.Schema.PackageReference)
}
return makeValidIdentifier(pkg), module, title(member), diagnostics
}
func moduleName(module string, pkg schema.PackageReference) string {
// Normalize module.
if pkg != nil {
def, err := pkg.Definition()
contract.AssertNoErrorf(err, "error loading package definition for %q", pkg.Name())
err = def.ImportLanguages(map[string]schema.Language{"nodejs": Importer})
contract.AssertNoErrorf(err, "error importing nodejs language for %q", pkg.Name())
if lang, ok := def.Language["nodejs"]; ok {
pkgInfo := lang.(NodePackageInfo)
if m, ok := pkgInfo.ModuleToPackage[module]; ok {
module = m
}
}
}
return strings.ToLower(strings.ReplaceAll(module, "/", "."))
}
// makeResourceName returns the expression that should be emitted for a resource's "name" parameter given its base name
// and the count variable name, if any.
func (g *generator) makeResourceName(baseName, count string) string {
if count == "" {
if g.isComponent {
return fmt.Sprintf("`${name}-%s`", baseName)
}
return fmt.Sprintf(`"%s"`, baseName)
}
if g.isComponent {
return fmt.Sprintf("`${name}-%s-${%s}`", baseName, count)
}
return fmt.Sprintf("`%s-${%s}`", baseName, count)
}
func (g *generator) genResourceOptions(opts *pcl.ResourceOptions) string {
if opts == nil {
return ""
}
// Turn the resource options into an ObjectConsExpression and generate it.
var object *model.ObjectConsExpression
appendOption := func(name string, value model.Expression) {
if object == nil {
object = &model.ObjectConsExpression{}
}
object.Items = append(object.Items, model.ObjectConsItem{
Key: &model.LiteralValueExpression{
Tokens: syntax.NewLiteralValueTokens(cty.StringVal(name)),
Value: cty.StringVal(name),
},
Value: value,
})
}
if opts.Parent != nil {
appendOption("parent", opts.Parent)
}
if opts.Provider != nil {
appendOption("provider", opts.Provider)
}
if opts.DependsOn != nil {
appendOption("dependsOn", opts.DependsOn)
}
if opts.Protect != nil {
appendOption("protect", opts.Protect)
}
if opts.RetainOnDelete != nil {
appendOption("retainOnDelete", opts.RetainOnDelete)
}
if opts.IgnoreChanges != nil {
appendOption("ignoreChanges", opts.IgnoreChanges)
}
if object == nil {
return ""
}
var buffer bytes.Buffer
g.Fgenf(&buffer, ", %v", g.lowerExpression(object, nil))
return buffer.String()
}
// genResourceDeclaration handles the generation of instantiations of resources.
func (g *generator) genResourceDeclaration(w io.Writer, r *pcl.Resource, needsDefinition bool) {
pkg, module, memberName, diagnostics := resourceTypeName(r)
g.diagnostics = append(g.diagnostics, diagnostics...)
if module != "" {
module = "." + module
}
qualifiedMemberName := fmt.Sprintf("%s%s.%s", pkg, module, memberName)
optionsBag := g.genResourceOptions(r.Options)
name := r.LogicalName()
variableName := makeValidIdentifier(r.Name())
if needsDefinition {
g.genTrivia(w, r.Definition.Tokens.GetType(""))
for _, l := range r.Definition.Tokens.GetLabels(nil) {
g.genTrivia(w, l)
}
g.genTrivia(w, r.Definition.Tokens.GetOpenBrace())
}
instantiate := func(resName string) {
g.Fgenf(w, "new %s(%s, {", qualifiedMemberName, resName)
indenter := func(f func()) { f() }
if len(r.Inputs) > 1 {
indenter = g.Indented
}
indenter(func() {
fmtString := "%s: %.v"
if len(r.Inputs) > 1 {
fmtString = "\n" + g.Indent + "%s: %.v,"
}
for _, attr := range r.Inputs {
propertyName := attr.Name
if !isLegalIdentifier(propertyName) {
propertyName = fmt.Sprintf("%q", propertyName)
}
if r.Schema != nil {
destType, diagnostics := r.InputType.Traverse(hcl.TraverseAttr{Name: attr.Name})
g.diagnostics = append(g.diagnostics, diagnostics...)
g.Fgenf(w, fmtString, propertyName,
g.lowerExpression(attr.Value, destType.(model.Type)))
} else {
g.Fgenf(w, fmtString, propertyName, attr.Value)
}
}
})
if len(r.Inputs) > 1 {
g.Fgenf(w, "\n%s", g.Indent)
}
g.Fgenf(w, "}%s)", optionsBag)
}
if r.Options != nil && r.Options.Range != nil {
rangeType := r.Options.Range.Type()
rangeExpr := r.Options.Range
if model.ContainsOutputs(r.Options.Range.Type()) {
rangeExpr = g.lowerExpression(rangeExpr, rangeType)
if model.InputType(model.BoolType).ConversionFrom(rangeType) == model.SafeConversion {
g.Fgenf(w, "%slet %s: %s | undefined;\n", g.Indent, variableName, qualifiedMemberName)
} else {
g.Fgenf(w, "%sconst %s: %s[] = [];\n", g.Indent, variableName, qualifiedMemberName)
}
switch expr := rangeExpr.(type) {
case *model.FunctionCallExpression:
if expr.Name == pcl.IntrinsicApply {
applyArgs, applyLambda := pcl.ParseApplyCall(expr)
// Step 1: generate the apply function call:
if len(applyArgs) == 1 {
// If we only have a single output, just generate a normal `.apply`
g.Fgenf(w, "%.20v.apply(", applyArgs[0])
} else {
// Otherwise, generate a call to `pulumi.all([]).apply()`.
g.Fgen(w, "pulumi.all([")
for i, o := range applyArgs {
if i > 0 {
g.Fgen(w, ", ")
}
g.Fgenf(w, "%v", o)
}
g.Fgen(w, "]).apply(")
}
// Step 2: apply lambda function arguments
switch len(applyLambda.Signature.Parameters) {
case 0:
g.Fgen(w, "()")
case 1:
g.Fgenf(w, "%s", applyLambda.Signature.Parameters[0].Name)
default:
g.Fgen(w, "([")
for i, p := range applyLambda.Signature.Parameters {
if i > 0 {
g.Fgen(w, ", ")
}
g.Fgenf(w, "%s", p.Name)
}
g.Fgen(w, "])")
}
// Step 3: The function body is where the resources are generated:
// The function body is also a non-output value so we rewrite the range of
// the resource declaration to this non-output value
g.Fgen(w, " => {\n")
g.Indented(func() {
r.Options.Range = applyLambda.Body
g.genResourceDeclaration(w, r, false)
})
g.Fgenf(w, "%s});\n", g.Indent)
return
}
// If we have anything else that returns output, just generate a normal `.apply`
g.Fgenf(w, "%.20v.apply(rangeBody => {\n", rangeExpr)
g.Indented(func() {
r.Options.Range = model.VariableReference(&model.Variable{
Name: "rangeBody",
VariableType: model.ResolveOutputs(rangeExpr.Type()),
})
g.genResourceDeclaration(w, r, false)
})
g.Fgenf(w, "%s});\n", g.Indent)
return
case *model.TupleConsExpression, *model.ForExpression:
// A list or list generator that contains outputs looks like list(output(T))
// ideally we want this to be output(list(T)) and then call apply:
// so we call pulumi.all to lift the elements of the list, then call apply
g.Fgenf(w, "pulumi.all(%.20v).apply(rangeBody => {\n", rangeExpr)
g.Indented(func() {
r.Options.Range = model.VariableReference(&model.Variable{
Name: "rangeBody",
VariableType: model.ResolveOutputs(rangeExpr.Type()),
})
g.genResourceDeclaration(w, r, false)
})
g.Fgenf(w, "%s});\n", g.Indent)
return
default:
// If we have anything else that returns output, just generate a normal `.apply`
g.Fgenf(w, "%.20v.apply(rangeBody => {\n", rangeExpr)
g.Indented(func() {
r.Options.Range = model.VariableReference(&model.Variable{
Name: "rangeBody",
VariableType: model.ResolveOutputs(rangeExpr.Type()),
})
g.genResourceDeclaration(w, r, false)
})
g.Fgenf(w, "%s});\n", g.Indent)
return
}
}
if model.InputType(model.BoolType).ConversionFrom(rangeType) == model.SafeConversion {
if needsDefinition {
g.Fgenf(w, "%slet %s: %s | undefined;\n", g.Indent, variableName, qualifiedMemberName)
}
g.Fgenf(w, "%sif (%.v) {\n", g.Indent, rangeExpr)
g.Indented(func() {
g.Fgenf(w, "%s%s = ", g.Indent, variableName)
instantiate(g.makeResourceName(name, ""))
g.Fgenf(w, ";\n")
})
g.Fgenf(w, "%s}\n", g.Indent)
} else {
if needsDefinition {
g.Fgenf(w, "%sconst %s: %s[] = [];\n", g.Indent, variableName, qualifiedMemberName)
}
resKey := "key"
if model.InputType(model.NumberType).ConversionFrom(rangeExpr.Type()) != model.NoConversion {
g.Fgenf(w, "%sfor (const range = {value: 0}; range.value < %.12o; range.value++) {\n", g.Indent, rangeExpr)
resKey = "value"
} else {
rangeExpr := &model.FunctionCallExpression{
Name: "entries",
Args: []model.Expression{rangeExpr},
}
g.Fgenf(w, "%sfor (const range of %.v) {\n", g.Indent, rangeExpr)
}
resName := g.makeResourceName(name, "range."+resKey)
g.Indented(func() {
g.Fgenf(w, "%s%s.push(", g.Indent, variableName)
instantiate(resName)
g.Fgenf(w, ");\n")
})
g.Fgenf(w, "%s}\n", g.Indent)
}
} else {
g.Fgenf(w, "%sconst %s = ", g.Indent, variableName)
instantiate(g.makeResourceName(name, ""))
g.Fgenf(w, ";\n")
}
g.genTrivia(w, r.Definition.Tokens.GetCloseBrace())
}
func (g *generator) genResource(w io.Writer, r *pcl.Resource) {
g.genResourceDeclaration(w, r, true)
}
// genResource handles the generation of instantiations of non-builtin resources.
func (g *generator) genComponent(w io.Writer, component *pcl.Component) {
componentName := component.DeclarationName()
optionsBag := g.genResourceOptions(component.Options)
name := component.LogicalName()
variableName := makeValidIdentifier(component.Name())
g.genTrivia(w, component.Definition.Tokens.GetType(""))
for _, l := range component.Definition.Tokens.GetLabels(nil) {
g.genTrivia(w, l)
}
g.genTrivia(w, component.Definition.Tokens.GetOpenBrace())
configVars := component.Program.ConfigVariables()
instantiate := func(resName string) {
if len(configVars) == 0 {
g.Fgenf(w, "new %s(%s%s)", componentName, resName, optionsBag)
return
}
g.Fgenf(w, "new %s(%s, {", componentName, resName)
indenter := func(f func()) { f() }
if len(component.Inputs) > 1 {
indenter = g.Indented
}
indenter(func() {
fmtString := "%s: %.v"
if len(component.Inputs) > 1 {
fmtString = "\n" + g.Indent + "%s: %.v,"
}
for _, attr := range component.Inputs {
propertyName := attr.Name
if !isLegalIdentifier(propertyName) {
propertyName = fmt.Sprintf("%q", propertyName)
}
g.Fgenf(w, fmtString, propertyName,
g.lowerExpression(attr.Value, attr.Value.Type()))
}
})
if len(component.Inputs) > 1 {
g.Fgenf(w, "\n%s", g.Indent)
}
g.Fgenf(w, "}%s)", optionsBag)
}
if component.Options != nil && component.Options.Range != nil {
rangeType := model.ResolveOutputs(component.Options.Range.Type())
rangeExpr := g.lowerExpression(component.Options.Range, rangeType)
if model.InputType(model.BoolType).ConversionFrom(rangeType) == model.SafeConversion {
g.Fgenf(w, "%slet %s: %s | undefined;\n", g.Indent, variableName, componentName)
g.Fgenf(w, "%sif (%.v) {\n", g.Indent, rangeExpr)
g.Indented(func() {
g.Fgenf(w, "%s%s = ", g.Indent, variableName)
instantiate(g.makeResourceName(name, ""))
g.Fgenf(w, ";\n")
})
g.Fgenf(w, "%s}\n", g.Indent)
} else {
g.Fgenf(w, "%sconst %s: %s[] = [];\n", g.Indent, variableName, componentName)
resKey := "key"
if model.InputType(model.NumberType).ConversionFrom(rangeExpr.Type()) != model.NoConversion {
g.Fgenf(w, "%sfor (const range = {value: 0}; range.value < %.12o; range.value++) {\n", g.Indent, rangeExpr)
resKey = "value"
} else {
rangeExpr := &model.FunctionCallExpression{
Name: "entries",
Args: []model.Expression{rangeExpr},
}
g.Fgenf(w, "%sfor (const range of %.v) {\n", g.Indent, rangeExpr)
}
resName := g.makeResourceName(name, "range."+resKey)
g.Indented(func() {
g.Fgenf(w, "%s%s.push(", g.Indent, variableName)
instantiate(resName)
g.Fgenf(w, ");\n")
})
g.Fgenf(w, "%s}\n", g.Indent)
}
} else {
g.Fgenf(w, "%sconst %s = ", g.Indent, variableName)
instantiate(g.makeResourceName(name, ""))
g.Fgenf(w, ";\n")
}
g.genTrivia(w, component.Definition.Tokens.GetCloseBrace())
}
func computeConfigTypeParam(configType model.Type) string {
switch pcl.UnwrapOption(configType) {
case model.StringType:
return "string"
case model.NumberType, model.IntType:
return "number"
case model.BoolType:
return "boolean"
case model.DynamicType:
return "any"
default:
switch complexType := pcl.UnwrapOption(configType).(type) {
case *model.ListType:
return fmt.Sprintf("Array<%s>", computeConfigTypeParam(complexType.ElementType))
case *model.MapType:
return fmt.Sprintf("Record<string, %s>", computeConfigTypeParam(complexType.ElementType))
case *model.ObjectType:
if len(complexType.Properties) == 0 {
return "any"
}
attributeKeys := []string{}
for attributeKey := range complexType.Properties {
attributeKeys = append(attributeKeys, attributeKey)
}
// get deterministically sorted attribute keys
sort.Strings(attributeKeys)
var elementTypes []string
for _, propertyName := range attributeKeys {
propertyType := complexType.Properties[propertyName]
elementType := fmt.Sprintf("%s?: %s", propertyName, computeConfigTypeParam(propertyType))
elementTypes = append(elementTypes, elementType)
}
return fmt.Sprintf("{%s}", strings.Join(elementTypes, ", "))
default:
return "any"
}
}
}
func (g *generator) genConfigVariable(w io.Writer, v *pcl.ConfigVariable) {
if !g.configCreated {
g.Fprintf(w, "%sconst config = new pulumi.Config();\n", g.Indent)
g.configCreated = true
}
getType := "Object"
switch pcl.UnwrapOption(v.Type()) {
case model.StringType:
getType = ""
case model.NumberType, model.IntType:
getType = "Number"
case model.BoolType:
getType = "Boolean"
}
typeParam := ""
if getType == "Object" {
// compute the type parameter T for the call to config.getObject<T>(...)
computedTypeParam := computeConfigTypeParam(v.Type())
if computedTypeParam != "any" {
// any is redundant
typeParam = fmt.Sprintf("<%s>", computedTypeParam)
}
}
getOrRequire := "get"
if v.DefaultValue == nil && !model.IsOptionalType(v.Type()) {
getOrRequire = "require"
}
if v.Description != "" {
for _, line := range strings.Split(v.Description, "\n") {
g.Fgenf(w, "%s// %s\n", g.Indent, line)
}
}
name := makeValidIdentifier(v.Name())
g.Fgenf(w, "%[1]sconst %[2]s = config.%[3]s%[4]s%[5]s(\"%[6]s\")",
g.Indent, name, getOrRequire, getType, typeParam, v.LogicalName())
if v.DefaultValue != nil && !model.IsOptionalType(v.Type()) {
g.Fgenf(w, " || %.v", g.lowerExpression(v.DefaultValue, v.DefaultValue.Type()))
}
g.Fgenf(w, ";\n")
}
func (g *generator) genLocalVariable(w io.Writer, v *pcl.LocalVariable) {
// TODO(pdg): trivia
g.Fgenf(w, "%sconst %s = %.3v;\n", g.Indent, v.Name(), g.lowerExpression(v.Definition.Value, v.Type()))
}
func (g *generator) genOutputVariable(w io.Writer, v *pcl.OutputVariable) {
if g.asyncMain {
// skip generating the output variables as export constants
// when we are inside an async main program because we export them as a single object
return
}
// TODO(pdg): trivia
g.Fgenf(w, "%sexport const %s = %.3v;\n", g.Indent,
makeValidIdentifier(v.Name()), g.lowerExpression(v.Value, v.Type()))
}
func (g *generator) genNYI(w io.Writer, reason string, vs ...interface{}) {
message := "not yet implemented: " + fmt.Sprintf(reason, vs...)
g.diagnostics = append(g.diagnostics, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: message,
Detail: message,
})
g.Fgenf(w, "(() => throw new Error(%q))()", fmt.Sprintf(reason, vs...))
}