pulumi/sdk/go/common/resource/properties_path.go

568 lines
17 KiB
Go

package resource
import (
"bytes"
"errors"
"fmt"
"strconv"
"strings"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/logging"
)
// PropertyPath represents a path to a nested property. The path may be composed of strings (which access properties
// in ObjectProperty values) and integers (which access elements of ArrayProperty values).
type PropertyPath []interface{}
// ParsePropertyPath parses a property path into a PropertyPath value.
//
// A property path string is essentially a Javascript property access expression in which all elements are literals.
// Valid property paths obey the following EBNF-ish grammar:
//
// propertyName := [a-zA-Z_$] { [a-zA-Z0-9_$] }
// quotedPropertyName := '"' ( '\' '"' | [^"] ) { ( '\' '"' | [^"] ) } '"'
// arrayIndex := { [0-9] }
//
// propertyIndex := '[' ( quotedPropertyName | arrayIndex ) ']'
// rootProperty := ( propertyName | propertyIndex )
// propertyAccessor := ( ( '.' propertyName ) | propertyIndex )
// path := rootProperty { propertyAccessor }
//
// Examples of valid paths:
// - root
// - root.nested
// - root["nested"]
// - root.double.nest
// - root["double"].nest
// - root["double"]["nest"]
// - root.array[0]
// - root.array[100]
// - root.array[0].nested
// - root.array[0][1].nested
// - root.nested.array[0].double[1]
// - root["key with \"escaped\" quotes"]
// - root["key with a ."]
// - ["root key with \"escaped\" quotes"].nested
// - ["root key with a ."][100]
// - root.array[*].field
// - root.array["*"].field
func ParsePropertyPath(path string) (PropertyPath, error) {
// We interpret the grammar above a little loosely in order to keep things simple. Specifically, we will accept
// something close to the following:
// pathElement := { '.' } [a-zA-Z_$][a-zA-Z0-9_$]
// pathIndex := '[' ( [0-9]+ | '"' ('\' '"' | [^"] )+ '"' ']'
// path := { pathElement | pathIndex }
var elements []interface{}
if len(path) > 0 && path[0] == '.' {
return nil, errors.New("expected property path to start with a name or index")
}
for len(path) > 0 {
switch path[0] {
case '.':
path = path[1:]
if len(path) == 0 {
return nil, errors.New("expected property path to end with a name or index")
}
if path[0] == '[' {
// We tolerate a '.' followed by a '[', which is not strictly legal, but is common from old providers.
logging.V(10).Infof("property path '%s' contains a '.' followed by a '['; this is not strictly legal", path)
}
case '[':
// If the character following the '[' is a '"', parse a string key.
var pathElement interface{}
if len(path) > 1 && path[1] == '"' {
var propertyKey []byte
var i int
for i = 2; ; {
if i >= len(path) {
return nil, errors.New("missing closing quote in property name")
} else if path[i] == '"' {
i++
break
} else if path[i] == '\\' && i+1 < len(path) && path[i+1] == '"' {
propertyKey = append(propertyKey, '"')
i += 2
} else {
propertyKey = append(propertyKey, path[i])
i++
}
}
if i >= len(path) || path[i] != ']' {
return nil, errors.New("missing closing bracket in property access")
}
pathElement, path = string(propertyKey), path[i:]
} else {
// Look for a closing ']'
rbracket := strings.IndexRune(path, ']')
if rbracket == -1 {
return nil, errors.New("missing closing bracket in array index")
}
segment := path[1:rbracket]
if segment == "*" {
pathElement, path = "*", path[rbracket:]
} else {
index, err := strconv.ParseInt(segment, 10, 0)
if err != nil {
return nil, fmt.Errorf("invalid array index: %w", err)
}
pathElement, path = int(index), path[rbracket:]
}
}
elements, path = append(elements, pathElement), path[1:]
default:
for i := 0; ; i++ {
if i == len(path) || path[i] == '.' || path[i] == '[' {
elements, path = append(elements, path[:i]), path[i:]
break
}
}
}
}
return PropertyPath(elements), nil
}
// Get attempts to get the value located by the PropertyPath inside the given PropertyValue. If any component of the
// path does not exist, this function will return (NullPropertyValue, false).
func (p PropertyPath) Get(v PropertyValue) (PropertyValue, bool) {
for _, key := range p {
switch {
case v.IsArray():
index, ok := key.(int)
if !ok || index < 0 || index >= len(v.ArrayValue()) {
return PropertyValue{}, false
}
v = v.ArrayValue()[index]
case v.IsObject():
k, ok := key.(string)
if !ok {
return PropertyValue{}, false
}
v, ok = v.ObjectValue()[PropertyKey(k)]
if !ok {
return PropertyValue{}, false
}
default:
return PropertyValue{}, false
}
}
return v, true
}
// Set attempts to set the location inside a PropertyValue indicated by the PropertyPath to the given value. If any
// component of the path besides the last component does not exist, this function will return false.
func (p PropertyPath) Set(dest, v PropertyValue) bool {
if len(p) == 0 {
return false
}
dest, ok := p[:len(p)-1].Get(dest)
if !ok {
return false
}
key := p[len(p)-1]
switch {
case dest.IsArray():
index, ok := key.(int)
if !ok || index < 0 || index >= len(dest.ArrayValue()) {
return false
}
dest.ArrayValue()[index] = v
case dest.IsObject():
k, ok := key.(string)
if !ok {
return false
}
dest.ObjectValue()[PropertyKey(k)] = v
default:
return false
}
return true
}
// Add sets the location inside a PropertyValue indicated by the PropertyPath to the given value. Any components
// referred to by the path that do not exist will be created. If there is a mismatch between the type of an existing
// component and a key that traverses that component, this function will return false. If the destination is a null
// property value, this function will create and return a new property value.
func (p PropertyPath) Add(dest, v PropertyValue) (PropertyValue, bool) {
if len(p) == 0 {
return PropertyValue{}, false
}
// set sets the destination referred to by the last element of the path to the given value.
rv := dest
set := func(v PropertyValue) {
dest, rv = v, v
}
for _, key := range p {
switch key := key.(type) {
case int:
// This key is an int, so we expect an array.
switch {
case dest.IsNull():
// If the destination array does not exist, create a new array with enough room to store the value at
// the requested index.
dest = NewArrayProperty(make([]PropertyValue, key+1))
set(dest)
case dest.IsArray():
// If the destination array does exist, ensure that it is large enough to accommodate the requested
// index.
if arr := dest.ArrayValue(); key >= len(arr) {
dest = NewArrayProperty(append(make([]PropertyValue, key+1-len(arr)), arr...))
set(dest)
}
default:
return PropertyValue{}, false
}
destV := dest.ArrayValue()
set = func(v PropertyValue) {
destV[key] = v
}
dest = destV[key]
case string:
// This key is a string, so we expect an object.
switch {
case dest.IsNull():
// If the destination does not exist, create a new object.
dest = NewObjectProperty(PropertyMap{})
set(dest)
case dest.IsObject():
// OK
default:
return PropertyValue{}, false
}
destV := dest.ObjectValue()
set = func(v PropertyValue) {
destV[PropertyKey(key)] = v
}
dest = destV[PropertyKey(key)]
default:
return PropertyValue{}, false
}
}
set(v)
return rv, true
}
// Delete attempts to delete the value located by the PropertyPath inside the given PropertyValue. If any component
// of the path does not exist, this function will return false.
func (p PropertyPath) Delete(dest PropertyValue) bool {
if len(p) == 0 {
return false
}
dest, ok := p[:len(p)-1].Get(dest)
if !ok {
return false
}
key := p[len(p)-1]
switch {
case dest.IsArray():
index, ok := key.(int)
if !ok || index < 0 || index >= len(dest.ArrayValue()) {
return false
}
dest.ArrayValue()[index] = PropertyValue{}
case dest.IsObject():
k, ok := key.(string)
if !ok {
return false
}
delete(dest.ObjectValue(), PropertyKey(k))
default:
return false
}
return true
}
// Contains returns true if the receiver property path contains the other property path.
// For example, the path `foo["bar"][1]` contains the path `foo.bar[1].baz`. The key `"*"`
// is a wildcard which matches any string or int index at that same nesting level. So for example,
// the path `foo.*.baz` contains `foo.bar.baz.bam`, and the path `*` contains any path.
func (p PropertyPath) Contains(other PropertyPath) bool {
if len(other) < len(p) {
return false
}
for i := range p {
pp := p[i]
otherp := other[i]
switch pp := pp.(type) {
case int:
if otherpi, ok := otherp.(int); !ok || otherpi != pp {
return false
}
case string:
if pp == "*" {
continue
}
if otherps, ok := otherp.(string); !ok || otherps != pp {
return false
}
default:
// Invalid path, return false
return false
}
}
return true
}
// unwrapSecrets recursively unwraps any secrets from the given PropertyValue returning true if any secrets were
// unwrapped.
func unwrapSecrets(v PropertyValue) (PropertyValue, bool) {
if v.IsSecret() {
inner, _ := unwrapSecrets(v.SecretValue().Element)
return inner, true
}
return v, false
}
func (p PropertyPath) reset(old, new PropertyValue, oldIsSecret, newIsSecret bool) bool {
if len(p) == 0 {
return false
}
// Unwrap any secrets from old & new, we can just go through them for this traversal.
old, isSecret := unwrapSecrets(old)
oldIsSecret = oldIsSecret || isSecret
new, isSecret = unwrapSecrets(new)
newIsSecret = newIsSecret || isSecret
// If this is the last component we want to do the reset, else we want to search for the next component.
key := p[0]
switch key := key.(type) {
case int:
// An index < 0 is always a path error, even for empty arrays or objects
if key < 0 {
return false
}
// This is a leaf path element, so we want to reset the value at this index in new to the value at this index from old
if len(p) == 1 {
if !old.IsArray() && !new.IsArray() {
// Neither old nor new are arrays, so we can't reset this index
return true
} else if !old.IsArray() || !new.IsArray() {
// One of old or new is an array but the other isn't, so this is a path error
return false
}
// If neither array contains this index then this is a _same_ and so ok, e.g. given old:[1, 2] and
// new:[1] and a path of [3] we can return true because new at [3] is the same as old at [3], it
// doesn't exist.
if key >= len(old.ArrayValue()) && key >= len(new.ArrayValue()) {
return true
}
// If one array has this index but the other doesn't this is a path failure because we can't
// remove a location from an array.
if key >= len(old.ArrayValue()) || key >= len(new.ArrayValue()) {
return false
}
// Otherwise both arrays contain this index and we can reset the value of it in new to what is in
// old.
v := old.ArrayValue()[key]
// If this was a secret value in old, but new isn't currently a secret context then we need to mark this
// reset value as secret.
if oldIsSecret && !newIsSecret {
v = MakeSecret(v)
}
new.ArrayValue()[key] = v
return true
}
if !old.IsArray() || !new.IsArray() {
// At least one of old or new is not an array, so we can't keep searching along this path but
// we only return an error if both are not arrays.
return !old.IsArray() && !new.IsArray()
}
// If this index is out of bounds in either array then this is a path failure because we can't
// continue the search of this path down each PropertyValue.
if key >= len(old.ArrayValue()) || key >= len(new.ArrayValue()) {
return false
}
old = old.ArrayValue()[key]
new = new.ArrayValue()[key]
return p[1:].reset(old, new, oldIsSecret, newIsSecret)
case string:
if key == "*" {
if len(p) == 1 {
if new.IsObject() {
if old.IsObject() {
for k := range old.ObjectValue() {
v := old.ObjectValue()[k]
// If this was a secret value in old, but new isn't currently a secret context then we need
// to mark this reset value as secret.
if oldIsSecret && !newIsSecret {
v = MakeSecret(v)
}
new.ObjectValue()[k] = v
}
for k := range new.ObjectValue() {
if _, has := old.ObjectValue()[k]; !has {
delete(new.ObjectValue(), k)
}
}
}
return true
} else if new.IsArray() {
if old.IsArray() {
for i := range old.ArrayValue() {
v := old.ArrayValue()[i]
// If this was a secret value in old, but new isn't currently a secret context then we need
// to mark this reset value as secret.
if oldIsSecret && !newIsSecret {
v = MakeSecret(v)
}
new.ArrayValue()[i] = v
}
}
return true
}
return false
}
if old.IsObject() && new.IsObject() {
oldObject := old.ObjectValue()
newObject := new.ObjectValue()
for k := range oldObject {
var hasOld, hasNew bool
oldValue, hasOld := oldObject[k]
newValue, hasNew := newObject[k]
if !hasOld || !hasNew {
return false
}
if !p[1:].reset(oldValue, newValue, oldIsSecret, newIsSecret) {
return false
}
}
return true
} else if old.IsArray() && new.IsArray() {
oldArray := old.ArrayValue()
newArray := new.ArrayValue()
for i := range oldArray {
if !p[1:].reset(oldArray[i], newArray[i], oldIsSecret, newIsSecret) {
return false
}
}
return true
}
return false
} else {
pkey := PropertyKey(key)
if len(p) == 1 {
// This is the leaf path entry, so we want to reset this property in new to it's value in old.
// Firstly if old doesn't have this key (either because it isn't an object or because it
// doesn't have the property) then we want to delete this from new.
var v PropertyValue
var has bool
if old.IsObject() {
v, has = old.ObjectValue()[pkey]
}
if has {
// If this path exists in old but new isn't an object than return a path error
if !new.IsObject() {
return false
}
// Else simply overwrite the value in new with the value from old, if this was a secret value in
// old, but new isn't currently a secret context then we need to mark this reset value as secret.
if oldIsSecret && !newIsSecret {
v = MakeSecret(v)
}
new.ObjectValue()[pkey] = v
} else {
// If the path doesn't exist in old then we want to delete it from new, but if new isn't
// an object then we can just do nothing we don't consider this a path error. e.g. given
// old:{} and new:1 and a path of "a" we can return true because ["a"] in both is the
// same (it doesn't exist).
if new.IsObject() {
delete(new.ObjectValue(), pkey)
}
}
return true
}
if !old.IsObject() || !new.IsObject() {
// At least one of old or new is not an object, so we can't keep searching along this path but
// we only return an error if both are not objects.
return !old.IsObject() && !new.IsObject()
}
new, hasNew := new.ObjectValue()[pkey]
old, hasOld := old.ObjectValue()[pkey]
if hasOld && !hasNew {
// Old has this key but new doesn't, but we still searching for the leaf item to set so this
// is a path error.
return false
}
if !hasOld && !hasNew {
// Neither value contain this path, so we're done.
return true
}
return p[1:].reset(old, new, oldIsSecret, newIsSecret)
}
}
contract.Failf("Invalid property path component type: %T", key)
return true
}
// Reset attempts to reset the values located by the PropertyPath inside the given new PropertyMap to the
// values from the same location in the old PropertyMap. Reset behaves likes Set in that it will not create
// intermediate locations, it also won't create or delete array locations (because that would change the size
// of the array).
func (p PropertyPath) Reset(old, new PropertyMap) bool {
return p.reset(NewObjectProperty(old), NewObjectProperty(new), false, false)
}
func requiresQuote(c rune) bool {
return !(c >= 'A' && c <= 'Z' || c >= 'a' && c <= 'z' || c >= '0' && c <= '9' || c == '_')
}
func (p PropertyPath) String() string {
var buf bytes.Buffer
for i, k := range p {
switch k := k.(type) {
case string:
var keyBuf bytes.Buffer
quoted := false
for _, c := range k {
if requiresQuote(c) {
quoted = true
if c == '"' {
keyBuf.WriteByte('\\')
}
}
keyBuf.WriteRune(c)
}
if !quoted {
if i == 0 {
fmt.Fprintf(&buf, "%s", keyBuf.String())
} else {
fmt.Fprintf(&buf, ".%s", keyBuf.String())
}
} else {
fmt.Fprintf(&buf, `["%s"]`, keyBuf.String())
}
case int:
fmt.Fprintf(&buf, "[%d]", k)
}
}
return buf.String()
}