mirror of https://github.com/pulumi/pulumi.git
807 lines
28 KiB
Go
807 lines
28 KiB
Go
// Copyright 2016-2020, Pulumi Corporation.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package model
|
|
|
|
import (
|
|
"reflect"
|
|
|
|
"github.com/hashicorp/hcl/v2"
|
|
"github.com/hashicorp/hcl/v2/hclsyntax"
|
|
_syntax "github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/syntax"
|
|
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
|
|
"github.com/zclconf/go-cty/cty"
|
|
)
|
|
|
|
type BindOption func(options *bindOptions)
|
|
|
|
type bindOptions struct {
|
|
allowMissingVariables bool
|
|
skipRangeTypechecking bool
|
|
}
|
|
|
|
func AllowMissingVariables(options *bindOptions) {
|
|
options.allowMissingVariables = true
|
|
}
|
|
|
|
func SkipRangeTypechecking(options *bindOptions) {
|
|
options.skipRangeTypechecking = true
|
|
}
|
|
|
|
type expressionBinder struct {
|
|
options bindOptions
|
|
anonSymbols map[*hclsyntax.AnonSymbolExpr]Definition
|
|
scope *Scope
|
|
tokens _syntax.TokenMap
|
|
}
|
|
|
|
// BindExpression binds an HCL2 expression using the given scope and token map.
|
|
func BindExpression(syntax hclsyntax.Node, scope *Scope, tokens _syntax.TokenMap,
|
|
opts ...BindOption,
|
|
) (Expression, hcl.Diagnostics) {
|
|
var options bindOptions
|
|
for _, opt := range opts {
|
|
opt(&options)
|
|
}
|
|
|
|
b := &expressionBinder{
|
|
options: options,
|
|
anonSymbols: map[*hclsyntax.AnonSymbolExpr]Definition{},
|
|
scope: scope,
|
|
tokens: tokens,
|
|
}
|
|
|
|
return b.bindExpression(syntax)
|
|
}
|
|
|
|
// BindExpressionText parses and binds an HCL2 expression using the given scope.
|
|
func BindExpressionText(source string, scope *Scope, initialPos hcl.Pos,
|
|
opts ...BindOption,
|
|
) (Expression, hcl.Diagnostics) {
|
|
syntax, tokens, diagnostics := _syntax.ParseExpression(source, "<anonymous>", initialPos)
|
|
if diagnostics.HasErrors() {
|
|
return nil, diagnostics
|
|
}
|
|
return BindExpression(syntax, scope, tokens, opts...)
|
|
}
|
|
|
|
// bindExpression binds a single HCL2 expression.
|
|
func (b *expressionBinder) bindExpression(syntax hclsyntax.Node) (Expression, hcl.Diagnostics) {
|
|
switch syntax := syntax.(type) {
|
|
case *hclsyntax.AnonSymbolExpr:
|
|
return b.bindAnonSymbolExpression(syntax)
|
|
case *hclsyntax.BinaryOpExpr:
|
|
return b.bindBinaryOpExpression(syntax)
|
|
case *hclsyntax.ConditionalExpr:
|
|
return b.bindConditionalExpression(syntax)
|
|
case *hclsyntax.ForExpr:
|
|
return b.bindForExpression(syntax)
|
|
case *hclsyntax.FunctionCallExpr:
|
|
return b.bindFunctionCallExpression(syntax)
|
|
case *hclsyntax.IndexExpr:
|
|
return b.bindIndexExpression(syntax)
|
|
case *hclsyntax.LiteralValueExpr:
|
|
return b.bindLiteralValueExpression(syntax)
|
|
case *hclsyntax.ObjectConsExpr:
|
|
return b.bindObjectConsExpression(syntax)
|
|
case *hclsyntax.ObjectConsKeyExpr:
|
|
return b.bindObjectConsKeyExpr(syntax)
|
|
case *hclsyntax.RelativeTraversalExpr:
|
|
return b.bindRelativeTraversalExpression(syntax)
|
|
case *hclsyntax.ScopeTraversalExpr:
|
|
return b.bindScopeTraversalExpression(syntax)
|
|
case *hclsyntax.SplatExpr:
|
|
return b.bindSplatExpression(syntax)
|
|
case *hclsyntax.TemplateExpr:
|
|
return b.bindTemplateExpression(syntax)
|
|
case *hclsyntax.TemplateJoinExpr:
|
|
return b.bindTemplateJoinExpression(syntax)
|
|
case *hclsyntax.TemplateWrapExpr:
|
|
return b.bindTemplateWrapExpression(syntax)
|
|
case *hclsyntax.TupleConsExpr:
|
|
return b.bindTupleConsExpression(syntax)
|
|
case *hclsyntax.UnaryOpExpr:
|
|
return b.bindUnaryOpExpression(syntax)
|
|
case *hclsyntax.ParenthesesExpr:
|
|
// This provides the scoped range for the parentheses, but does not effect the
|
|
// precedence. That is handled elsewhere. We can just pass through.
|
|
return b.bindExpression(syntax.Expression)
|
|
default:
|
|
contract.Failf("unexpected expression node of type %T (%v)", syntax, syntax.Range())
|
|
return nil, nil
|
|
}
|
|
}
|
|
|
|
// ctyTypeToType converts a cty.Type to a model Type. If big is true, the resulting type will be a big integer instead
|
|
// of number.
|
|
func ctyTypeToType(t cty.Type, optional bool, big bool) Type {
|
|
// TODO(pdg): non-primitive types. We simply don't need these yet.
|
|
var result Type
|
|
switch {
|
|
case t.Equals(cty.NilType):
|
|
return NoneType
|
|
case t.Equals(cty.Bool):
|
|
result = BoolType
|
|
case t.Equals(cty.Number):
|
|
if big {
|
|
result = BigIntegerType
|
|
} else {
|
|
result = NumberType
|
|
}
|
|
case t.Equals(cty.String):
|
|
result = StringType
|
|
case t.Equals(cty.DynamicPseudoType):
|
|
result = DynamicType
|
|
case t.IsMapType():
|
|
result = NewMapType(ctyTypeToType(t.ElementType(), false, false))
|
|
case t.IsListType():
|
|
result = NewListType(ctyTypeToType(t.ElementType(), false, false))
|
|
case t.IsSetType():
|
|
result = NewSetType(ctyTypeToType(t.ElementType(), false, false))
|
|
case t.IsObjectType():
|
|
properties := map[string]Type{}
|
|
for key, t := range t.AttributeTypes() {
|
|
properties[key] = ctyTypeToType(t, false, false)
|
|
}
|
|
result = NewObjectType(properties)
|
|
case t.IsTupleType():
|
|
elements := make([]Type, len(t.TupleElementTypes()))
|
|
for i, t := range t.TupleElementTypes() {
|
|
elements[i] = ctyTypeToType(t, false, false)
|
|
}
|
|
result = NewTupleType(elements...)
|
|
default:
|
|
contract.Failf("NYI: cty type %v", t.FriendlyName())
|
|
return NoneType
|
|
}
|
|
if optional {
|
|
return NewOptionalType(result)
|
|
}
|
|
return result
|
|
}
|
|
|
|
var typeCapsule = cty.Capsule("type", reflect.TypeOf((*Type)(nil)).Elem())
|
|
|
|
// encapsulateType wraps the given type in a cty capsule for use in TraverseIndex values.
|
|
func encapsulateType(t Type) cty.Value {
|
|
return cty.CapsuleVal(typeCapsule, &t)
|
|
}
|
|
|
|
// MakeTraverser returns an hcl.TraverseIndex with a key of the appropriate type.
|
|
func MakeTraverser(t Type) hcl.TraverseIndex {
|
|
return hcl.TraverseIndex{Key: encapsulateType(t)}
|
|
}
|
|
|
|
// getOperationSignature returns the equivalent StaticFunctionSignature for a given Operation. This signature can be
|
|
// used for typechecking the operation's arguments.
|
|
func getOperationSignature(op *hclsyntax.Operation, big bool) StaticFunctionSignature {
|
|
ctyParams := op.Impl.Params()
|
|
|
|
sig := StaticFunctionSignature{
|
|
Parameters: make([]Parameter, len(ctyParams)),
|
|
}
|
|
for i, p := range ctyParams {
|
|
sig.Parameters[i] = Parameter{
|
|
Name: p.Name,
|
|
Type: ctyTypeToType(p.Type, p.AllowNull, big),
|
|
}
|
|
}
|
|
if p := op.Impl.VarParam(); p != nil {
|
|
sig.VarargsParameter = &Parameter{
|
|
Name: p.Name,
|
|
Type: ctyTypeToType(p.Type, p.AllowNull, big),
|
|
}
|
|
}
|
|
sig.ReturnType = ctyTypeToType(op.Type, false, big)
|
|
|
|
return sig
|
|
}
|
|
|
|
// typecheckArgs typechecks the arguments against a given function signature.
|
|
func typecheckArgs(srcRange hcl.Range, signature StaticFunctionSignature, args ...Expression) hcl.Diagnostics {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
// First typecheck the arguments for positional parameters. It is an error if there are fewer arguments than parameters
|
|
// unless all missing arguments are for parameters with optional types.
|
|
remainingArgs := args
|
|
for _, param := range signature.Parameters {
|
|
if len(remainingArgs) == 0 {
|
|
if !IsOptionalType(param.Type) {
|
|
diagnostics = append(diagnostics, missingRequiredArgument(param, srcRange))
|
|
}
|
|
} else {
|
|
if !InputType(param.Type).ConversionFrom(remainingArgs[0].Type()).Exists() {
|
|
diagnostics = append(diagnostics, ExprNotConvertible(InputType(param.Type), remainingArgs[0]))
|
|
}
|
|
remainingArgs = remainingArgs[1:]
|
|
}
|
|
}
|
|
|
|
// Typecheck any remaining arguments against the varargs parameter. It is an error if there is no varargs parameter.
|
|
if len(remainingArgs) > 0 {
|
|
varargs := signature.VarargsParameter
|
|
if varargs == nil {
|
|
diagnostics = append(diagnostics, extraArguments(len(signature.Parameters), len(args), srcRange))
|
|
} else {
|
|
for _, arg := range remainingArgs {
|
|
if !InputType(varargs.Type).ConversionFrom(arg.Type()).Exists() {
|
|
diagnostics = append(diagnostics, ExprNotConvertible(InputType(varargs.Type), arg))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return diagnostics
|
|
}
|
|
|
|
// bindAnonSymbolExpression binds an anonymous symbol expression. These expressions should only occur in the context of
|
|
// splat expressions, and are used represent the receiver of the expression following the splat. It is an error for
|
|
// an anonymous symbol expression to occur outside this context.
|
|
func (b *expressionBinder) bindAnonSymbolExpression(syntax *hclsyntax.AnonSymbolExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
lv, ok := b.anonSymbols[syntax]
|
|
if !ok {
|
|
diagnostics = append(diagnostics, internalError(syntax.Range(), "undefined anonymous symbol"))
|
|
return &ErrorExpression{Syntax: syntax, exprType: DynamicType}, diagnostics
|
|
}
|
|
|
|
traversal := hcl.Traversal{hcl.TraverseRoot{Name: "", SrcRange: syntax.SrcRange}}
|
|
return &ScopeTraversalExpression{
|
|
Syntax: &hclsyntax.ScopeTraversalExpr{
|
|
Traversal: traversal,
|
|
SrcRange: syntax.SrcRange,
|
|
},
|
|
Tokens: _syntax.NewScopeTraversalTokens(traversal),
|
|
RootName: "",
|
|
Parts: []Traversable{lv},
|
|
Traversal: traversal,
|
|
}, diagnostics
|
|
}
|
|
|
|
// bindBinaryOpExpression binds a binary operator expression. If the operands to the binary operator contain eventuals,
|
|
// the result of the binary operator is eventual.
|
|
func (b *expressionBinder) bindBinaryOpExpression(syntax *hclsyntax.BinaryOpExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
// Bind the operands.
|
|
leftOperand, leftDiags := b.bindExpression(syntax.LHS)
|
|
diagnostics = append(diagnostics, leftDiags...)
|
|
|
|
rightOperand, rightDiags := b.bindExpression(syntax.RHS)
|
|
diagnostics = append(diagnostics, rightDiags...)
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.BinaryOpTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewBinaryOpTokens(syntax.Op)
|
|
}
|
|
expr := &BinaryOpExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
LeftOperand: leftOperand,
|
|
Operation: syntax.Op,
|
|
RightOperand: rightOperand,
|
|
}
|
|
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindConditionalExpression binds a conditional expression. The condition expression must be of type bool. The type of
|
|
// the expression is unify(true result, false result). If the type of the condition is eventual, the type of the
|
|
// expression is eventual.
|
|
func (b *expressionBinder) bindConditionalExpression(syntax *hclsyntax.ConditionalExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
// Bind the operands.
|
|
condition, conditionDiags := b.bindExpression(syntax.Condition)
|
|
diagnostics = append(diagnostics, conditionDiags...)
|
|
|
|
trueResult, trueDiags := b.bindExpression(syntax.TrueResult)
|
|
diagnostics = append(diagnostics, trueDiags...)
|
|
|
|
falseResult, falseDiags := b.bindExpression(syntax.FalseResult)
|
|
diagnostics = append(diagnostics, falseDiags...)
|
|
|
|
expr := &ConditionalExpression{
|
|
Syntax: syntax,
|
|
Tokens: b.tokens.ForNode(syntax),
|
|
Condition: condition,
|
|
TrueResult: trueResult,
|
|
FalseResult: falseResult,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindForExpression binds a for expression. The value being iterated must be an list, map, or object. The type of
|
|
// the result is an list unless a key expression is present, in which case it is a map. Key types must be strings.
|
|
// The element type of the result is the type of the value expression. If the type of the value being iterated is
|
|
// optional or eventual, the type of the result is optional or eventual. If the type of the key expression or
|
|
// condition expression is eventual, the result is also eventual.
|
|
func (b *expressionBinder) bindForExpression(syntax *hclsyntax.ForExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
collection, collectionDiags := b.bindExpression(syntax.CollExpr)
|
|
diagnostics = append(diagnostics, collectionDiags...)
|
|
// TODO(pdg): handle union types.
|
|
strictCollectionTypechecking := !b.options.skipRangeTypechecking
|
|
keyType, valueType, kvDiags := GetCollectionTypes(
|
|
collection.Type(),
|
|
syntax.CollExpr.Range(),
|
|
strictCollectionTypechecking)
|
|
|
|
diagnostics = append(diagnostics, kvDiags...)
|
|
|
|
// Push a scope for the key and value variables and define these vars.
|
|
b.scope = b.scope.Push(syntax)
|
|
defer func() { b.scope = b.scope.Pop() }()
|
|
|
|
var keyVariable *Variable
|
|
if syntax.KeyVar != "" {
|
|
keyVariable = &Variable{Name: syntax.KeyVar, VariableType: keyType}
|
|
ok := b.scope.Define(syntax.KeyVar, keyVariable)
|
|
contract.Assertf(ok, "key variable %q already defined", syntax.KeyVar)
|
|
}
|
|
valueVariable := &Variable{Name: syntax.ValVar, VariableType: valueType}
|
|
if ok := b.scope.Define(syntax.ValVar, valueVariable); !ok {
|
|
diagnostics = append(diagnostics, nameAlreadyDefined(syntax.ValVar, syntax.Range()))
|
|
}
|
|
|
|
var key Expression
|
|
if syntax.KeyExpr != nil {
|
|
keyExpr, keyDiags := b.bindExpression(syntax.KeyExpr)
|
|
key, diagnostics = keyExpr, append(diagnostics, keyDiags...)
|
|
}
|
|
|
|
value, valueDiags := b.bindExpression(syntax.ValExpr)
|
|
diagnostics = append(diagnostics, valueDiags...)
|
|
|
|
var condition Expression
|
|
if syntax.CondExpr != nil {
|
|
condExpr, conditionDiags := b.bindExpression(syntax.CondExpr)
|
|
condition, diagnostics = condExpr, append(diagnostics, conditionDiags...)
|
|
}
|
|
|
|
tokens := b.tokens.ForNode(syntax)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewForTokens(syntax.KeyVar, syntax.ValVar, syntax.KeyExpr != nil, syntax.Group,
|
|
syntax.CondExpr != nil)
|
|
}
|
|
expr := &ForExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
KeyVariable: keyVariable,
|
|
ValueVariable: valueVariable,
|
|
Collection: collection,
|
|
Key: key,
|
|
Value: value,
|
|
Condition: condition,
|
|
Group: syntax.Group,
|
|
StrictCollectionTypechecking: !b.options.skipRangeTypechecking,
|
|
}
|
|
typecheckDiags := expr.typecheck(false, false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindFunctionCallExpression binds a function call expression. The name of the function is bound using the current
|
|
// scope chain. An argument to a function must be assignable to the type of the corresponding parameter. It is not an
|
|
// error to omit arguments for trailing positional parameters if those parameters are optional. If any of the
|
|
// parameters to the function are eventual, the result type of the function is also eventual.
|
|
func (b *expressionBinder) bindFunctionCallExpression(
|
|
syntax *hclsyntax.FunctionCallExpr,
|
|
) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.FunctionCallTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewFunctionCallTokens(syntax.Name, len(syntax.Args))
|
|
}
|
|
|
|
// Bind the function's arguments.
|
|
args := make([]Expression, len(syntax.Args))
|
|
for i, syntax := range syntax.Args {
|
|
arg, argDiagnostics := b.bindExpression(syntax)
|
|
args[i], diagnostics = arg, append(diagnostics, argDiagnostics...)
|
|
}
|
|
|
|
// Attempt to bind the name of the function to its definition.
|
|
function, hasFunction := b.scope.BindFunctionReference(syntax.Name)
|
|
if !hasFunction {
|
|
diagnostics = append(diagnostics, unknownFunction(syntax.Name, syntax.NameRange))
|
|
|
|
return &FunctionCallExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Name: syntax.Name,
|
|
Signature: StaticFunctionSignature{
|
|
VarargsParameter: &Parameter{Name: "args", Type: DynamicType},
|
|
ReturnType: DynamicType,
|
|
},
|
|
Args: args,
|
|
}, diagnostics
|
|
}
|
|
|
|
// Compute the function's signature.
|
|
signature, sigDiags := function.GetSignature(args)
|
|
diagnostics = append(diagnostics, sigDiags...)
|
|
|
|
expr := &FunctionCallExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Name: syntax.Name,
|
|
Signature: signature,
|
|
Args: args,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindIndexExpression binds an index expression. The value being indexed must be an list, map, or object.
|
|
//
|
|
// - If the value is an list, the result type is the type of the list's elements, and the index must be assignable to
|
|
// number (TODO(pdg): require integer indices?)
|
|
// - If the value is a map, the result type is the type of the map's values, and the index must be assignable to
|
|
// string
|
|
// - If the value is an object, the result type is any, and the index must be assignable to a string
|
|
//
|
|
// If either the value being indexed or the index is eventual, result is eventual.
|
|
func (b *expressionBinder) bindIndexExpression(syntax *hclsyntax.IndexExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
collection, collectionDiags := b.bindExpression(syntax.Collection)
|
|
diagnostics = append(diagnostics, collectionDiags...)
|
|
|
|
key, keyDiags := b.bindExpression(syntax.Key)
|
|
diagnostics = append(diagnostics, keyDiags...)
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.IndexTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewIndexTokens()
|
|
}
|
|
expr := &IndexExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Collection: collection,
|
|
Key: key,
|
|
StrictCollectionTypechecking: !b.options.skipRangeTypechecking,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindLiteralValueExpression binds a literal value expression. The value must be a boolean, integer, number, or
|
|
// string.
|
|
func (b *expressionBinder) bindLiteralValueExpression(
|
|
syntax *hclsyntax.LiteralValueExpr,
|
|
) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.LiteralValueTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewLiteralValueTokens(syntax.Val)
|
|
}
|
|
expr := &LiteralValueExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Value: syntax.Val,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindObjectConsExpression binds an object construction expression. The expression's keys must be strings. If any of
|
|
// the keys are not literal values, the result type is map(U), where U is the unified type of the property types.
|
|
// Otherwise, the result type is an object type that maps each key to the type of its value. If any of the keys is
|
|
// eventual, the result is eventual.
|
|
func (b *expressionBinder) bindObjectConsExpression(syntax *hclsyntax.ObjectConsExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
items := make([]ObjectConsItem, len(syntax.Items))
|
|
for i, item := range syntax.Items {
|
|
keyExpr, keyDiags := b.bindExpression(item.KeyExpr)
|
|
diagnostics = append(diagnostics, keyDiags...)
|
|
|
|
valExpr, valDiags := b.bindExpression(item.ValueExpr)
|
|
diagnostics = append(diagnostics, valDiags...)
|
|
|
|
items[i] = ObjectConsItem{Key: keyExpr, Value: valExpr}
|
|
}
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.ObjectConsTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewObjectConsTokens(len(syntax.Items))
|
|
}
|
|
expr := &ObjectConsExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Items: items,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindObjectConsKeyExpr binds an object construction key.
|
|
func (b *expressionBinder) bindObjectConsKeyExpr(syntax *hclsyntax.ObjectConsKeyExpr) (Expression, hcl.Diagnostics) {
|
|
if !syntax.ForceNonLiteral {
|
|
if name := hcl.ExprAsKeyword(syntax); name != "" {
|
|
expr, diags := b.bindExpression(&hclsyntax.LiteralValueExpr{
|
|
Val: cty.StringVal(name),
|
|
SrcRange: syntax.Range(),
|
|
})
|
|
lit := expr.(*LiteralValueExpression)
|
|
lit.Tokens, _ = b.tokens.ForNode(syntax).(*_syntax.LiteralValueTokens)
|
|
if lit.Tokens == nil {
|
|
lit.Tokens = _syntax.NewLiteralValueTokens(cty.StringVal(name))
|
|
}
|
|
return lit, diags
|
|
}
|
|
}
|
|
return b.bindExpression(syntax.Wrapped)
|
|
}
|
|
|
|
// bindRelativeTraversalExpression binds a relative traversal expression. Each step of the traversal must be a legal
|
|
// step with respect to its receiver. The root receiver is the type of the source expression.
|
|
func (b *expressionBinder) bindRelativeTraversalExpression(
|
|
syntax *hclsyntax.RelativeTraversalExpr,
|
|
) (Expression, hcl.Diagnostics) {
|
|
source, diagnostics := b.bindExpression(syntax.Source)
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.RelativeTraversalTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewRelativeTraversalTokens(syntax.Traversal)
|
|
}
|
|
|
|
// This occurs with splat expressions.
|
|
if source, ok := source.(*ScopeTraversalExpression); ok {
|
|
source.Syntax.Traversal = append(source.Syntax.Traversal, syntax.Traversal...)
|
|
source.Syntax.SrcRange = hcl.RangeBetween(source.Syntax.SrcRange, syntax.SrcRange)
|
|
source.Tokens.Traversal = append(source.Tokens.Traversal, tokens.Traversal...)
|
|
|
|
source.Traversal = source.Syntax.Traversal
|
|
return source, source.Typecheck(false)
|
|
}
|
|
|
|
expr := &RelativeTraversalExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Source: source,
|
|
Traversal: syntax.Traversal,
|
|
}
|
|
typecheckDiags := expr.typecheck(false, b.options.allowMissingVariables)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindScopeTraversalExpression binds a scope traversal expression. Each step of the traversal must be a legal
|
|
// step with respect to its receiver. The root receiver is the definition in the current scope referred to by the root
|
|
// name.
|
|
func (b *expressionBinder) bindScopeTraversalExpression(
|
|
syntax *hclsyntax.ScopeTraversalExpr,
|
|
) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.ScopeTraversalTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewScopeTraversalTokens(syntax.Traversal)
|
|
}
|
|
|
|
rootName := syntax.Traversal.RootName()
|
|
def, ok := b.scope.BindReference(rootName)
|
|
if !ok {
|
|
parts := make([]Traversable, len(syntax.Traversal))
|
|
for i := range parts {
|
|
parts[i] = DynamicType
|
|
}
|
|
|
|
diagnostics = hcl.Diagnostics{
|
|
undefinedVariable(rootName, syntax.Traversal.SimpleSplit().Abs.SourceRange(),
|
|
b.options.allowMissingVariables),
|
|
}
|
|
return &ScopeTraversalExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Parts: parts,
|
|
RootName: syntax.Traversal.RootName(),
|
|
Traversal: syntax.Traversal,
|
|
}, diagnostics
|
|
}
|
|
|
|
expr := &ScopeTraversalExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Parts: []Traversable{def},
|
|
RootName: syntax.Traversal.RootName(),
|
|
Traversal: syntax.Traversal,
|
|
}
|
|
typecheckDiags := expr.typecheck(false, b.options.allowMissingVariables)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindSplatExpression binds a splat expression. If the type being splatted is an list or any, the type of the
|
|
// iteration variable is the element type of the list or any, respectively. Otherwise, the type of the iteration
|
|
// variable is the type being splatted: in this case, the splat expression implicitly constructs a single-element
|
|
// tuple. The type of the result is an list whose elements have the type of the each expression. If the value being
|
|
// splatted is eventual or optional, the result type is eventual or optional.
|
|
func (b *expressionBinder) bindSplatExpression(syntax *hclsyntax.SplatExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
source, sourceDiags := b.bindExpression(syntax.Source)
|
|
diagnostics = append(diagnostics, sourceDiags...)
|
|
|
|
item := &SplatVariable{}
|
|
b.anonSymbols[syntax.Item] = item
|
|
|
|
source, item.VariableType = splatItemType(source, syntax)
|
|
|
|
each, eachDiags := b.bindExpression(syntax.Each)
|
|
diagnostics = append(diagnostics, eachDiags...)
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.SplatTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewSplatTokens(false)
|
|
}
|
|
expr := &SplatExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Source: source,
|
|
Each: each,
|
|
Item: item,
|
|
}
|
|
typecheckDiags := expr.typecheck(false, false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindTemplateExpression binds a template expression. The result is always a string. If any of the parts of the
|
|
// expression are eventual, the result is eventual.
|
|
func (b *expressionBinder) bindTemplateExpression(syntax *hclsyntax.TemplateExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
parts := make([]Expression, len(syntax.Parts))
|
|
for i, syntax := range syntax.Parts {
|
|
part, partDiags := b.bindExpression(syntax)
|
|
parts[i], diagnostics = part, append(diagnostics, partDiags...)
|
|
}
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.TemplateTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewTemplateTokens()
|
|
}
|
|
expr := &TemplateExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Parts: parts,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindTemplateJoinExpression binds a template join expression. If any of the parts of the expression are eventual,
|
|
// the result is eventual.
|
|
func (b *expressionBinder) bindTemplateJoinExpression(
|
|
syntax *hclsyntax.TemplateJoinExpr,
|
|
) (Expression, hcl.Diagnostics) {
|
|
tuple, diagnostics := b.bindExpression(syntax.Tuple)
|
|
|
|
expr := &TemplateJoinExpression{
|
|
Syntax: syntax,
|
|
Tuple: tuple,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindTemplateWrapExpression binds a template wrap expression.
|
|
func (b *expressionBinder) bindTemplateWrapExpression(
|
|
syntax *hclsyntax.TemplateWrapExpr,
|
|
) (Expression, hcl.Diagnostics) {
|
|
wrapped, diagnostics := b.bindExpression(syntax.Wrapped)
|
|
if tokens, hasTokens := b.tokens.ForNode(syntax).(*_syntax.TemplateTokens); hasTokens {
|
|
wrapped.SetLeadingTrivia(append(wrapped.GetLeadingTrivia(), tokens.Open.LeadingTrivia...))
|
|
wrapped.SetTrailingTrivia(append(wrapped.GetTrailingTrivia(), tokens.Close.TrailingTrivia...))
|
|
}
|
|
return wrapped, diagnostics
|
|
}
|
|
|
|
// bindTupleConsExpression binds a tuple construction expression. The result is a tuple(T_0, ..., T_N).
|
|
func (b *expressionBinder) bindTupleConsExpression(syntax *hclsyntax.TupleConsExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
exprs := make([]Expression, len(syntax.Exprs))
|
|
for i, syntax := range syntax.Exprs {
|
|
expr, exprDiags := b.bindExpression(syntax)
|
|
exprs[i], diagnostics = expr, append(diagnostics, exprDiags...)
|
|
}
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.TupleConsTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewTupleConsTokens(len(syntax.Exprs))
|
|
}
|
|
expr := &TupleConsExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Expressions: exprs,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
return expr, diagnostics
|
|
}
|
|
|
|
// bindUnaryOpExpression binds a unary operator expression. If the operand to the unary operator contains eventuals,
|
|
// the result of the unary operator is eventual.
|
|
func (b *expressionBinder) bindUnaryOpExpression(syntax *hclsyntax.UnaryOpExpr) (Expression, hcl.Diagnostics) {
|
|
var diagnostics hcl.Diagnostics
|
|
|
|
// Bind the operand.
|
|
operand, operandDiags := b.bindExpression(syntax.Val)
|
|
diagnostics = append(diagnostics, operandDiags...)
|
|
|
|
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.UnaryOpTokens)
|
|
if tokens == nil {
|
|
tokens = _syntax.NewUnaryOpTokens(syntax.Op)
|
|
}
|
|
expr := &UnaryOpExpression{
|
|
Syntax: syntax,
|
|
Tokens: tokens,
|
|
Operation: syntax.Op,
|
|
Operand: operand,
|
|
}
|
|
typecheckDiags := expr.Typecheck(false)
|
|
diagnostics = append(diagnostics, typecheckDiags...)
|
|
|
|
// If the operation is just negation, and the operand is a literal we can simplify the expression.
|
|
if lit, ok := operand.(*LiteralValueExpression); ok && syntax.Op == hclsyntax.OpNegate {
|
|
switch lit.Value.Type() {
|
|
case cty.Number:
|
|
newVal := lit.Value.Negate()
|
|
|
|
lit.Tokens = &_syntax.LiteralValueTokens{
|
|
Parentheses: tokens.Parentheses,
|
|
Value: append([]_syntax.Token{tokens.Operator}, lit.Tokens.Value...),
|
|
}
|
|
lit.Syntax = &hclsyntax.LiteralValueExpr{
|
|
SrcRange: syntax.SrcRange,
|
|
Val: newVal,
|
|
}
|
|
lit.Value = newVal
|
|
return lit, diagnostics
|
|
}
|
|
}
|
|
|
|
return expr, diagnostics
|
|
}
|