pulumi/pkg/codegen/hcl2/model/binder_expression.go

807 lines
28 KiB
Go

// Copyright 2016-2020, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"reflect"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
_syntax "github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/syntax"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
)
type BindOption func(options *bindOptions)
type bindOptions struct {
allowMissingVariables bool
skipRangeTypechecking bool
}
func AllowMissingVariables(options *bindOptions) {
options.allowMissingVariables = true
}
func SkipRangeTypechecking(options *bindOptions) {
options.skipRangeTypechecking = true
}
type expressionBinder struct {
options bindOptions
anonSymbols map[*hclsyntax.AnonSymbolExpr]Definition
scope *Scope
tokens _syntax.TokenMap
}
// BindExpression binds an HCL2 expression using the given scope and token map.
func BindExpression(syntax hclsyntax.Node, scope *Scope, tokens _syntax.TokenMap,
opts ...BindOption,
) (Expression, hcl.Diagnostics) {
var options bindOptions
for _, opt := range opts {
opt(&options)
}
b := &expressionBinder{
options: options,
anonSymbols: map[*hclsyntax.AnonSymbolExpr]Definition{},
scope: scope,
tokens: tokens,
}
return b.bindExpression(syntax)
}
// BindExpressionText parses and binds an HCL2 expression using the given scope.
func BindExpressionText(source string, scope *Scope, initialPos hcl.Pos,
opts ...BindOption,
) (Expression, hcl.Diagnostics) {
syntax, tokens, diagnostics := _syntax.ParseExpression(source, "<anonymous>", initialPos)
if diagnostics.HasErrors() {
return nil, diagnostics
}
return BindExpression(syntax, scope, tokens, opts...)
}
// bindExpression binds a single HCL2 expression.
func (b *expressionBinder) bindExpression(syntax hclsyntax.Node) (Expression, hcl.Diagnostics) {
switch syntax := syntax.(type) {
case *hclsyntax.AnonSymbolExpr:
return b.bindAnonSymbolExpression(syntax)
case *hclsyntax.BinaryOpExpr:
return b.bindBinaryOpExpression(syntax)
case *hclsyntax.ConditionalExpr:
return b.bindConditionalExpression(syntax)
case *hclsyntax.ForExpr:
return b.bindForExpression(syntax)
case *hclsyntax.FunctionCallExpr:
return b.bindFunctionCallExpression(syntax)
case *hclsyntax.IndexExpr:
return b.bindIndexExpression(syntax)
case *hclsyntax.LiteralValueExpr:
return b.bindLiteralValueExpression(syntax)
case *hclsyntax.ObjectConsExpr:
return b.bindObjectConsExpression(syntax)
case *hclsyntax.ObjectConsKeyExpr:
return b.bindObjectConsKeyExpr(syntax)
case *hclsyntax.RelativeTraversalExpr:
return b.bindRelativeTraversalExpression(syntax)
case *hclsyntax.ScopeTraversalExpr:
return b.bindScopeTraversalExpression(syntax)
case *hclsyntax.SplatExpr:
return b.bindSplatExpression(syntax)
case *hclsyntax.TemplateExpr:
return b.bindTemplateExpression(syntax)
case *hclsyntax.TemplateJoinExpr:
return b.bindTemplateJoinExpression(syntax)
case *hclsyntax.TemplateWrapExpr:
return b.bindTemplateWrapExpression(syntax)
case *hclsyntax.TupleConsExpr:
return b.bindTupleConsExpression(syntax)
case *hclsyntax.UnaryOpExpr:
return b.bindUnaryOpExpression(syntax)
case *hclsyntax.ParenthesesExpr:
// This provides the scoped range for the parentheses, but does not effect the
// precedence. That is handled elsewhere. We can just pass through.
return b.bindExpression(syntax.Expression)
default:
contract.Failf("unexpected expression node of type %T (%v)", syntax, syntax.Range())
return nil, nil
}
}
// ctyTypeToType converts a cty.Type to a model Type. If big is true, the resulting type will be a big integer instead
// of number.
func ctyTypeToType(t cty.Type, optional bool, big bool) Type {
// TODO(pdg): non-primitive types. We simply don't need these yet.
var result Type
switch {
case t.Equals(cty.NilType):
return NoneType
case t.Equals(cty.Bool):
result = BoolType
case t.Equals(cty.Number):
if big {
result = BigIntegerType
} else {
result = NumberType
}
case t.Equals(cty.String):
result = StringType
case t.Equals(cty.DynamicPseudoType):
result = DynamicType
case t.IsMapType():
result = NewMapType(ctyTypeToType(t.ElementType(), false, false))
case t.IsListType():
result = NewListType(ctyTypeToType(t.ElementType(), false, false))
case t.IsSetType():
result = NewSetType(ctyTypeToType(t.ElementType(), false, false))
case t.IsObjectType():
properties := map[string]Type{}
for key, t := range t.AttributeTypes() {
properties[key] = ctyTypeToType(t, false, false)
}
result = NewObjectType(properties)
case t.IsTupleType():
elements := make([]Type, len(t.TupleElementTypes()))
for i, t := range t.TupleElementTypes() {
elements[i] = ctyTypeToType(t, false, false)
}
result = NewTupleType(elements...)
default:
contract.Failf("NYI: cty type %v", t.FriendlyName())
return NoneType
}
if optional {
return NewOptionalType(result)
}
return result
}
var typeCapsule = cty.Capsule("type", reflect.TypeOf((*Type)(nil)).Elem())
// encapsulateType wraps the given type in a cty capsule for use in TraverseIndex values.
func encapsulateType(t Type) cty.Value {
return cty.CapsuleVal(typeCapsule, &t)
}
// MakeTraverser returns an hcl.TraverseIndex with a key of the appropriate type.
func MakeTraverser(t Type) hcl.TraverseIndex {
return hcl.TraverseIndex{Key: encapsulateType(t)}
}
// getOperationSignature returns the equivalent StaticFunctionSignature for a given Operation. This signature can be
// used for typechecking the operation's arguments.
func getOperationSignature(op *hclsyntax.Operation, big bool) StaticFunctionSignature {
ctyParams := op.Impl.Params()
sig := StaticFunctionSignature{
Parameters: make([]Parameter, len(ctyParams)),
}
for i, p := range ctyParams {
sig.Parameters[i] = Parameter{
Name: p.Name,
Type: ctyTypeToType(p.Type, p.AllowNull, big),
}
}
if p := op.Impl.VarParam(); p != nil {
sig.VarargsParameter = &Parameter{
Name: p.Name,
Type: ctyTypeToType(p.Type, p.AllowNull, big),
}
}
sig.ReturnType = ctyTypeToType(op.Type, false, big)
return sig
}
// typecheckArgs typechecks the arguments against a given function signature.
func typecheckArgs(srcRange hcl.Range, signature StaticFunctionSignature, args ...Expression) hcl.Diagnostics {
var diagnostics hcl.Diagnostics
// First typecheck the arguments for positional parameters. It is an error if there are fewer arguments than parameters
// unless all missing arguments are for parameters with optional types.
remainingArgs := args
for _, param := range signature.Parameters {
if len(remainingArgs) == 0 {
if !IsOptionalType(param.Type) {
diagnostics = append(diagnostics, missingRequiredArgument(param, srcRange))
}
} else {
if !InputType(param.Type).ConversionFrom(remainingArgs[0].Type()).Exists() {
diagnostics = append(diagnostics, ExprNotConvertible(InputType(param.Type), remainingArgs[0]))
}
remainingArgs = remainingArgs[1:]
}
}
// Typecheck any remaining arguments against the varargs parameter. It is an error if there is no varargs parameter.
if len(remainingArgs) > 0 {
varargs := signature.VarargsParameter
if varargs == nil {
diagnostics = append(diagnostics, extraArguments(len(signature.Parameters), len(args), srcRange))
} else {
for _, arg := range remainingArgs {
if !InputType(varargs.Type).ConversionFrom(arg.Type()).Exists() {
diagnostics = append(diagnostics, ExprNotConvertible(InputType(varargs.Type), arg))
}
}
}
}
return diagnostics
}
// bindAnonSymbolExpression binds an anonymous symbol expression. These expressions should only occur in the context of
// splat expressions, and are used represent the receiver of the expression following the splat. It is an error for
// an anonymous symbol expression to occur outside this context.
func (b *expressionBinder) bindAnonSymbolExpression(syntax *hclsyntax.AnonSymbolExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
lv, ok := b.anonSymbols[syntax]
if !ok {
diagnostics = append(diagnostics, internalError(syntax.Range(), "undefined anonymous symbol"))
return &ErrorExpression{Syntax: syntax, exprType: DynamicType}, diagnostics
}
traversal := hcl.Traversal{hcl.TraverseRoot{Name: "", SrcRange: syntax.SrcRange}}
return &ScopeTraversalExpression{
Syntax: &hclsyntax.ScopeTraversalExpr{
Traversal: traversal,
SrcRange: syntax.SrcRange,
},
Tokens: _syntax.NewScopeTraversalTokens(traversal),
RootName: "",
Parts: []Traversable{lv},
Traversal: traversal,
}, diagnostics
}
// bindBinaryOpExpression binds a binary operator expression. If the operands to the binary operator contain eventuals,
// the result of the binary operator is eventual.
func (b *expressionBinder) bindBinaryOpExpression(syntax *hclsyntax.BinaryOpExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
// Bind the operands.
leftOperand, leftDiags := b.bindExpression(syntax.LHS)
diagnostics = append(diagnostics, leftDiags...)
rightOperand, rightDiags := b.bindExpression(syntax.RHS)
diagnostics = append(diagnostics, rightDiags...)
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.BinaryOpTokens)
if tokens == nil {
tokens = _syntax.NewBinaryOpTokens(syntax.Op)
}
expr := &BinaryOpExpression{
Syntax: syntax,
Tokens: tokens,
LeftOperand: leftOperand,
Operation: syntax.Op,
RightOperand: rightOperand,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindConditionalExpression binds a conditional expression. The condition expression must be of type bool. The type of
// the expression is unify(true result, false result). If the type of the condition is eventual, the type of the
// expression is eventual.
func (b *expressionBinder) bindConditionalExpression(syntax *hclsyntax.ConditionalExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
// Bind the operands.
condition, conditionDiags := b.bindExpression(syntax.Condition)
diagnostics = append(diagnostics, conditionDiags...)
trueResult, trueDiags := b.bindExpression(syntax.TrueResult)
diagnostics = append(diagnostics, trueDiags...)
falseResult, falseDiags := b.bindExpression(syntax.FalseResult)
diagnostics = append(diagnostics, falseDiags...)
expr := &ConditionalExpression{
Syntax: syntax,
Tokens: b.tokens.ForNode(syntax),
Condition: condition,
TrueResult: trueResult,
FalseResult: falseResult,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindForExpression binds a for expression. The value being iterated must be an list, map, or object. The type of
// the result is an list unless a key expression is present, in which case it is a map. Key types must be strings.
// The element type of the result is the type of the value expression. If the type of the value being iterated is
// optional or eventual, the type of the result is optional or eventual. If the type of the key expression or
// condition expression is eventual, the result is also eventual.
func (b *expressionBinder) bindForExpression(syntax *hclsyntax.ForExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
collection, collectionDiags := b.bindExpression(syntax.CollExpr)
diagnostics = append(diagnostics, collectionDiags...)
// TODO(pdg): handle union types.
strictCollectionTypechecking := !b.options.skipRangeTypechecking
keyType, valueType, kvDiags := GetCollectionTypes(
collection.Type(),
syntax.CollExpr.Range(),
strictCollectionTypechecking)
diagnostics = append(diagnostics, kvDiags...)
// Push a scope for the key and value variables and define these vars.
b.scope = b.scope.Push(syntax)
defer func() { b.scope = b.scope.Pop() }()
var keyVariable *Variable
if syntax.KeyVar != "" {
keyVariable = &Variable{Name: syntax.KeyVar, VariableType: keyType}
ok := b.scope.Define(syntax.KeyVar, keyVariable)
contract.Assertf(ok, "key variable %q already defined", syntax.KeyVar)
}
valueVariable := &Variable{Name: syntax.ValVar, VariableType: valueType}
if ok := b.scope.Define(syntax.ValVar, valueVariable); !ok {
diagnostics = append(diagnostics, nameAlreadyDefined(syntax.ValVar, syntax.Range()))
}
var key Expression
if syntax.KeyExpr != nil {
keyExpr, keyDiags := b.bindExpression(syntax.KeyExpr)
key, diagnostics = keyExpr, append(diagnostics, keyDiags...)
}
value, valueDiags := b.bindExpression(syntax.ValExpr)
diagnostics = append(diagnostics, valueDiags...)
var condition Expression
if syntax.CondExpr != nil {
condExpr, conditionDiags := b.bindExpression(syntax.CondExpr)
condition, diagnostics = condExpr, append(diagnostics, conditionDiags...)
}
tokens := b.tokens.ForNode(syntax)
if tokens == nil {
tokens = _syntax.NewForTokens(syntax.KeyVar, syntax.ValVar, syntax.KeyExpr != nil, syntax.Group,
syntax.CondExpr != nil)
}
expr := &ForExpression{
Syntax: syntax,
Tokens: tokens,
KeyVariable: keyVariable,
ValueVariable: valueVariable,
Collection: collection,
Key: key,
Value: value,
Condition: condition,
Group: syntax.Group,
StrictCollectionTypechecking: !b.options.skipRangeTypechecking,
}
typecheckDiags := expr.typecheck(false, false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindFunctionCallExpression binds a function call expression. The name of the function is bound using the current
// scope chain. An argument to a function must be assignable to the type of the corresponding parameter. It is not an
// error to omit arguments for trailing positional parameters if those parameters are optional. If any of the
// parameters to the function are eventual, the result type of the function is also eventual.
func (b *expressionBinder) bindFunctionCallExpression(
syntax *hclsyntax.FunctionCallExpr,
) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.FunctionCallTokens)
if tokens == nil {
tokens = _syntax.NewFunctionCallTokens(syntax.Name, len(syntax.Args))
}
// Bind the function's arguments.
args := make([]Expression, len(syntax.Args))
for i, syntax := range syntax.Args {
arg, argDiagnostics := b.bindExpression(syntax)
args[i], diagnostics = arg, append(diagnostics, argDiagnostics...)
}
// Attempt to bind the name of the function to its definition.
function, hasFunction := b.scope.BindFunctionReference(syntax.Name)
if !hasFunction {
diagnostics = append(diagnostics, unknownFunction(syntax.Name, syntax.NameRange))
return &FunctionCallExpression{
Syntax: syntax,
Tokens: tokens,
Name: syntax.Name,
Signature: StaticFunctionSignature{
VarargsParameter: &Parameter{Name: "args", Type: DynamicType},
ReturnType: DynamicType,
},
Args: args,
}, diagnostics
}
// Compute the function's signature.
signature, sigDiags := function.GetSignature(args)
diagnostics = append(diagnostics, sigDiags...)
expr := &FunctionCallExpression{
Syntax: syntax,
Tokens: tokens,
Name: syntax.Name,
Signature: signature,
Args: args,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindIndexExpression binds an index expression. The value being indexed must be an list, map, or object.
//
// - If the value is an list, the result type is the type of the list's elements, and the index must be assignable to
// number (TODO(pdg): require integer indices?)
// - If the value is a map, the result type is the type of the map's values, and the index must be assignable to
// string
// - If the value is an object, the result type is any, and the index must be assignable to a string
//
// If either the value being indexed or the index is eventual, result is eventual.
func (b *expressionBinder) bindIndexExpression(syntax *hclsyntax.IndexExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
collection, collectionDiags := b.bindExpression(syntax.Collection)
diagnostics = append(diagnostics, collectionDiags...)
key, keyDiags := b.bindExpression(syntax.Key)
diagnostics = append(diagnostics, keyDiags...)
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.IndexTokens)
if tokens == nil {
tokens = _syntax.NewIndexTokens()
}
expr := &IndexExpression{
Syntax: syntax,
Tokens: tokens,
Collection: collection,
Key: key,
StrictCollectionTypechecking: !b.options.skipRangeTypechecking,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindLiteralValueExpression binds a literal value expression. The value must be a boolean, integer, number, or
// string.
func (b *expressionBinder) bindLiteralValueExpression(
syntax *hclsyntax.LiteralValueExpr,
) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.LiteralValueTokens)
if tokens == nil {
tokens = _syntax.NewLiteralValueTokens(syntax.Val)
}
expr := &LiteralValueExpression{
Syntax: syntax,
Tokens: tokens,
Value: syntax.Val,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindObjectConsExpression binds an object construction expression. The expression's keys must be strings. If any of
// the keys are not literal values, the result type is map(U), where U is the unified type of the property types.
// Otherwise, the result type is an object type that maps each key to the type of its value. If any of the keys is
// eventual, the result is eventual.
func (b *expressionBinder) bindObjectConsExpression(syntax *hclsyntax.ObjectConsExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
items := make([]ObjectConsItem, len(syntax.Items))
for i, item := range syntax.Items {
keyExpr, keyDiags := b.bindExpression(item.KeyExpr)
diagnostics = append(diagnostics, keyDiags...)
valExpr, valDiags := b.bindExpression(item.ValueExpr)
diagnostics = append(diagnostics, valDiags...)
items[i] = ObjectConsItem{Key: keyExpr, Value: valExpr}
}
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.ObjectConsTokens)
if tokens == nil {
tokens = _syntax.NewObjectConsTokens(len(syntax.Items))
}
expr := &ObjectConsExpression{
Syntax: syntax,
Tokens: tokens,
Items: items,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindObjectConsKeyExpr binds an object construction key.
func (b *expressionBinder) bindObjectConsKeyExpr(syntax *hclsyntax.ObjectConsKeyExpr) (Expression, hcl.Diagnostics) {
if !syntax.ForceNonLiteral {
if name := hcl.ExprAsKeyword(syntax); name != "" {
expr, diags := b.bindExpression(&hclsyntax.LiteralValueExpr{
Val: cty.StringVal(name),
SrcRange: syntax.Range(),
})
lit := expr.(*LiteralValueExpression)
lit.Tokens, _ = b.tokens.ForNode(syntax).(*_syntax.LiteralValueTokens)
if lit.Tokens == nil {
lit.Tokens = _syntax.NewLiteralValueTokens(cty.StringVal(name))
}
return lit, diags
}
}
return b.bindExpression(syntax.Wrapped)
}
// bindRelativeTraversalExpression binds a relative traversal expression. Each step of the traversal must be a legal
// step with respect to its receiver. The root receiver is the type of the source expression.
func (b *expressionBinder) bindRelativeTraversalExpression(
syntax *hclsyntax.RelativeTraversalExpr,
) (Expression, hcl.Diagnostics) {
source, diagnostics := b.bindExpression(syntax.Source)
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.RelativeTraversalTokens)
if tokens == nil {
tokens = _syntax.NewRelativeTraversalTokens(syntax.Traversal)
}
// This occurs with splat expressions.
if source, ok := source.(*ScopeTraversalExpression); ok {
source.Syntax.Traversal = append(source.Syntax.Traversal, syntax.Traversal...)
source.Syntax.SrcRange = hcl.RangeBetween(source.Syntax.SrcRange, syntax.SrcRange)
source.Tokens.Traversal = append(source.Tokens.Traversal, tokens.Traversal...)
source.Traversal = source.Syntax.Traversal
return source, source.Typecheck(false)
}
expr := &RelativeTraversalExpression{
Syntax: syntax,
Tokens: tokens,
Source: source,
Traversal: syntax.Traversal,
}
typecheckDiags := expr.typecheck(false, b.options.allowMissingVariables)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindScopeTraversalExpression binds a scope traversal expression. Each step of the traversal must be a legal
// step with respect to its receiver. The root receiver is the definition in the current scope referred to by the root
// name.
func (b *expressionBinder) bindScopeTraversalExpression(
syntax *hclsyntax.ScopeTraversalExpr,
) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.ScopeTraversalTokens)
if tokens == nil {
tokens = _syntax.NewScopeTraversalTokens(syntax.Traversal)
}
rootName := syntax.Traversal.RootName()
def, ok := b.scope.BindReference(rootName)
if !ok {
parts := make([]Traversable, len(syntax.Traversal))
for i := range parts {
parts[i] = DynamicType
}
diagnostics = hcl.Diagnostics{
undefinedVariable(rootName, syntax.Traversal.SimpleSplit().Abs.SourceRange(),
b.options.allowMissingVariables),
}
return &ScopeTraversalExpression{
Syntax: syntax,
Tokens: tokens,
Parts: parts,
RootName: syntax.Traversal.RootName(),
Traversal: syntax.Traversal,
}, diagnostics
}
expr := &ScopeTraversalExpression{
Syntax: syntax,
Tokens: tokens,
Parts: []Traversable{def},
RootName: syntax.Traversal.RootName(),
Traversal: syntax.Traversal,
}
typecheckDiags := expr.typecheck(false, b.options.allowMissingVariables)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindSplatExpression binds a splat expression. If the type being splatted is an list or any, the type of the
// iteration variable is the element type of the list or any, respectively. Otherwise, the type of the iteration
// variable is the type being splatted: in this case, the splat expression implicitly constructs a single-element
// tuple. The type of the result is an list whose elements have the type of the each expression. If the value being
// splatted is eventual or optional, the result type is eventual or optional.
func (b *expressionBinder) bindSplatExpression(syntax *hclsyntax.SplatExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
source, sourceDiags := b.bindExpression(syntax.Source)
diagnostics = append(diagnostics, sourceDiags...)
item := &SplatVariable{}
b.anonSymbols[syntax.Item] = item
source, item.VariableType = splatItemType(source, syntax)
each, eachDiags := b.bindExpression(syntax.Each)
diagnostics = append(diagnostics, eachDiags...)
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.SplatTokens)
if tokens == nil {
tokens = _syntax.NewSplatTokens(false)
}
expr := &SplatExpression{
Syntax: syntax,
Tokens: tokens,
Source: source,
Each: each,
Item: item,
}
typecheckDiags := expr.typecheck(false, false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindTemplateExpression binds a template expression. The result is always a string. If any of the parts of the
// expression are eventual, the result is eventual.
func (b *expressionBinder) bindTemplateExpression(syntax *hclsyntax.TemplateExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
parts := make([]Expression, len(syntax.Parts))
for i, syntax := range syntax.Parts {
part, partDiags := b.bindExpression(syntax)
parts[i], diagnostics = part, append(diagnostics, partDiags...)
}
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.TemplateTokens)
if tokens == nil {
tokens = _syntax.NewTemplateTokens()
}
expr := &TemplateExpression{
Syntax: syntax,
Tokens: tokens,
Parts: parts,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindTemplateJoinExpression binds a template join expression. If any of the parts of the expression are eventual,
// the result is eventual.
func (b *expressionBinder) bindTemplateJoinExpression(
syntax *hclsyntax.TemplateJoinExpr,
) (Expression, hcl.Diagnostics) {
tuple, diagnostics := b.bindExpression(syntax.Tuple)
expr := &TemplateJoinExpression{
Syntax: syntax,
Tuple: tuple,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindTemplateWrapExpression binds a template wrap expression.
func (b *expressionBinder) bindTemplateWrapExpression(
syntax *hclsyntax.TemplateWrapExpr,
) (Expression, hcl.Diagnostics) {
wrapped, diagnostics := b.bindExpression(syntax.Wrapped)
if tokens, hasTokens := b.tokens.ForNode(syntax).(*_syntax.TemplateTokens); hasTokens {
wrapped.SetLeadingTrivia(append(wrapped.GetLeadingTrivia(), tokens.Open.LeadingTrivia...))
wrapped.SetTrailingTrivia(append(wrapped.GetTrailingTrivia(), tokens.Close.TrailingTrivia...))
}
return wrapped, diagnostics
}
// bindTupleConsExpression binds a tuple construction expression. The result is a tuple(T_0, ..., T_N).
func (b *expressionBinder) bindTupleConsExpression(syntax *hclsyntax.TupleConsExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
exprs := make([]Expression, len(syntax.Exprs))
for i, syntax := range syntax.Exprs {
expr, exprDiags := b.bindExpression(syntax)
exprs[i], diagnostics = expr, append(diagnostics, exprDiags...)
}
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.TupleConsTokens)
if tokens == nil {
tokens = _syntax.NewTupleConsTokens(len(syntax.Exprs))
}
expr := &TupleConsExpression{
Syntax: syntax,
Tokens: tokens,
Expressions: exprs,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
return expr, diagnostics
}
// bindUnaryOpExpression binds a unary operator expression. If the operand to the unary operator contains eventuals,
// the result of the unary operator is eventual.
func (b *expressionBinder) bindUnaryOpExpression(syntax *hclsyntax.UnaryOpExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
// Bind the operand.
operand, operandDiags := b.bindExpression(syntax.Val)
diagnostics = append(diagnostics, operandDiags...)
tokens, _ := b.tokens.ForNode(syntax).(*_syntax.UnaryOpTokens)
if tokens == nil {
tokens = _syntax.NewUnaryOpTokens(syntax.Op)
}
expr := &UnaryOpExpression{
Syntax: syntax,
Tokens: tokens,
Operation: syntax.Op,
Operand: operand,
}
typecheckDiags := expr.Typecheck(false)
diagnostics = append(diagnostics, typecheckDiags...)
// If the operation is just negation, and the operand is a literal we can simplify the expression.
if lit, ok := operand.(*LiteralValueExpression); ok && syntax.Op == hclsyntax.OpNegate {
switch lit.Value.Type() {
case cty.Number:
newVal := lit.Value.Negate()
lit.Tokens = &_syntax.LiteralValueTokens{
Parentheses: tokens.Parentheses,
Value: append([]_syntax.Token{tokens.Operator}, lit.Tokens.Value...),
}
lit.Syntax = &hclsyntax.LiteralValueExpr{
SrcRange: syntax.SrcRange,
Val: newVal,
}
lit.Value = newVal
return lit, diagnostics
}
}
return expr, diagnostics
}