pulumi/pkg/codegen/pcl/binder_schema.go

659 lines
18 KiB
Go

// Copyright 2016-2020, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pcl
import (
"fmt"
"strings"
"sync"
"github.com/blang/semver"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/sdk/v3/go/common/slice"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
)
type packageSchema struct {
schema schema.PackageReference
// These maps map from canonical tokens to actual tokens.
//
// Both maps take `nil` to mean uninitialized.
resourceTokenMap map[string]string
functionTokenMap map[string]string
}
type packageOpts struct {
version string
pluginDownloadURL string
}
// Lookup a PCL invoke token in a schema.
func LookupFunction(pkg schema.PackageReference, token string) (*schema.Function, bool, error) {
s, _, ok, err := newPackageSchema(pkg).LookupFunction(token)
return s, ok, err
}
// Lookup a PCL resource token in a schema.
func LookupResource(pkg schema.PackageReference, token string) (*schema.Resource, bool, error) {
r, _, ok, err := newPackageSchema(pkg).LookupResource(token)
return r, ok, err
}
func (ps *packageSchema) LookupFunction(token string) (*schema.Function, string, bool, error) {
contract.Assertf(ps != nil, "packageSchema must not be nil")
if ps.functionTokenMap == nil {
ps.initFunctionMap()
}
schemaToken, ok := ps.functionTokenMap[token]
if !ok {
token = canonicalizeToken(token, ps.schema)
schemaToken, ok = ps.functionTokenMap[token]
if !ok {
return nil, "", false, nil
}
}
fn, ok, err := ps.schema.Functions().Get(schemaToken)
return fn, token, ok, err
}
func (ps *packageSchema) LookupResource(token string) (*schema.Resource, string, bool, error) {
contract.Assertf(ps != nil, "packageSchema must not be nil")
if ps.resourceTokenMap == nil {
ps.initResourceMap()
}
schemaToken, ok := ps.resourceTokenMap[token]
if !ok {
token = canonicalizeToken(token, ps.schema)
schemaToken, ok = ps.resourceTokenMap[token]
if !ok {
return nil, "", false, nil
}
}
res, ok, err := ps.schema.Resources().Get(schemaToken)
return res, token, ok, err
}
func (ps *packageSchema) initFunctionMap() {
functionTokenMap := map[string]string{}
for it := ps.schema.Functions().Range(); it.Next(); {
functionTokenMap[canonicalizeToken(it.Token(), ps.schema)] = it.Token()
}
ps.functionTokenMap = functionTokenMap
}
func (ps *packageSchema) initResourceMap() {
resourceTokenMap := map[string]string{}
for it := ps.schema.Resources().Range(); it.Next(); {
resourceTokenMap[canonicalizeToken(it.Token(), ps.schema)] = it.Token()
}
ps.resourceTokenMap = resourceTokenMap
}
func newPackageSchema(pkg schema.PackageReference) *packageSchema {
return &packageSchema{schema: pkg}
}
type PackageInfo struct {
name string
version string
}
type PackageCache struct {
m sync.RWMutex
// cache by (name, version)
entries map[PackageInfo]*packageSchema
}
func NewPackageCache() *PackageCache {
return &PackageCache{
entries: map[PackageInfo]*packageSchema{},
}
}
func (c *PackageCache) getPackageSchema(pkg PackageInfo) (*packageSchema, bool) {
c.m.RLock()
defer c.m.RUnlock()
schema, ok := c.entries[pkg]
return schema, ok
}
// loadPackageSchema loads the schema for a given package by loading the corresponding provider and calling its
// GetSchema method.
func (c *PackageCache) loadPackageSchema(loader schema.Loader, name, version string) (*packageSchema, error) {
pkgInfo := PackageInfo{
name: name,
version: version,
}
if s, ok := c.getPackageSchema(pkgInfo); ok {
return s, nil
}
var versionSemver *semver.Version
if v, err := semver.Make(version); err == nil {
versionSemver = &v
}
pkg, err := schema.LoadPackageReference(loader, name, versionSemver)
if err != nil {
return nil, err
}
schema := newPackageSchema(pkg)
c.m.Lock()
defer c.m.Unlock()
c.entries[pkgInfo] = schema
return schema, nil
}
// canonicalizeToken converts a Pulumi token into its canonical "pkg:module:member" form.
func canonicalizeToken(tok string, pkg schema.PackageReference) string {
_, _, member, _ := DecomposeToken(tok, hcl.Range{})
return fmt.Sprintf("%s:%s:%s", pkg.Name(), pkg.TokenToModule(tok), member)
}
// getPkgOpts gets the package options from an unbound resource node.
func (b *binder) getPkgOpts(node *Resource) packageOpts {
node.VariableType = model.NewObjectType(map[string]model.Type{
"id": model.NewOutputType(model.StringType),
"urn": model.NewOutputType(model.StringType),
})
var rangeKey, rangeValue model.Type
for _, block := range node.syntax.Body.Blocks {
if block.Type == "options" {
if rng, hasRange := block.Body.Attributes["range"]; hasRange {
expr, _ := model.BindExpression(rng.Expr, b.root, b.tokens, b.options.modelOptions()...)
typ := model.ResolveOutputs(expr.Type())
strict := !b.options.skipRangeTypecheck
rk, rv, _ := model.GetCollectionTypes(typ, rng.Range(), strict)
rangeKey, rangeValue = rk, rv
}
}
}
scopes := newResourceScopes(b.root, node, rangeKey, rangeValue)
block, _ := model.BindBlock(node.syntax, scopes, b.tokens, b.options.modelOptions()...)
var options *model.Block
for _, item := range block.Body.Items {
if item, ok := item.(*model.Block); ok && item.Type == "options" {
options = item
break
}
}
pkgOpts := packageOpts{}
// Typecheck the options block.
if options != nil {
resourceOptions := &ResourceOptions{}
for _, item := range options.Body.Items {
switch item := item.(type) {
case *model.Attribute:
switch item.Name {
case "version":
pkgOpts.version = modelExprToString(&item.Value)
case "pluginDownloadURL":
pkgOpts.pluginDownloadURL = modelExprToString(&item.Value)
}
}
}
node.Options = resourceOptions
}
return pkgOpts
}
// loadReferencedPackageSchemas loads the schemas for any packages referenced by a given node.
func (b *binder) loadReferencedPackageSchemas(n Node) error {
var pkgOpts packageOpts
packageNames := codegen.StringSet{}
if r, ok := n.(*Resource); ok {
token, tokenRange := getResourceToken(r)
packageName, mod, name, _ := DecomposeToken(token, tokenRange)
if mod == "providers" {
packageNames.Add(name)
} else {
packageNames.Add(packageName)
}
pkgOpts = b.getPkgOpts(r)
}
diags := hclsyntax.VisitAll(n.SyntaxNode(), func(node hclsyntax.Node) hcl.Diagnostics {
call, ok := node.(*hclsyntax.FunctionCallExpr)
if !ok {
return nil
}
token, tokenRange, ok := getInvokeToken(call)
if !ok {
return nil
}
packageName, mod, name, _ := DecomposeToken(token, tokenRange)
if packageName != pulumiPackage {
packageNames.Add(packageName)
} else if mod == "providers" {
packageNames.Add(name)
}
return nil
})
contract.Assertf(len(diags) == 0, "unexpected diagnostics: %v", diags)
for _, name := range packageNames.SortedValues() {
if _, ok := b.referencedPackages[name]; ok && pkgOpts.version == "" || name == "" {
continue
}
pkg, err := b.options.packageCache.loadPackageSchema(b.options.loader, name, pkgOpts.version)
if err != nil {
if b.options.skipResourceTypecheck || b.options.skipInvokeTypecheck {
continue
}
return err
}
b.referencedPackages[name] = pkg.schema
}
return nil
}
func buildEnumValue(v interface{}) cty.Value {
switch v := v.(type) {
case string:
return cty.StringVal(v)
case bool:
return cty.BoolVal(v)
case int:
return cty.NumberIntVal(int64(v))
case int32:
return cty.NumberIntVal(int64(v))
case int64:
return cty.NumberIntVal(v)
case float64:
return cty.NumberFloatVal(v)
default:
contract.Failf("Found unexpected constant type %T: %[1]v", v)
return cty.NilVal
}
}
// A marker struct to ensure type safety when retrieving the type from an
// annotated `model.EnumType`.
type enumSchemaType struct {
Type *schema.EnumType
}
// schemaTypeToType converts a schema.Type to a model Type.
func (b *binder) schemaTypeToType(src schema.Type) model.Type {
switch src := src.(type) {
case *schema.ArrayType:
return model.NewListType(b.schemaTypeToType(src.ElementType))
case *schema.MapType:
return model.NewMapType(b.schemaTypeToType(src.ElementType))
case *schema.EnumType:
values := []cty.Value{}
elType := b.schemaTypeToType(src.ElementType)
for _, el := range src.Elements {
values = append(values, buildEnumValue(el.Value))
}
return model.NewEnumType(src.Token, elType, values, enumSchemaType{src})
case *schema.ObjectType:
if t, ok := b.schemaTypes[src]; ok {
return t
}
properties := map[string]model.Type{}
objType := model.NewObjectType(properties, src)
b.schemaTypes[src] = objType
for _, prop := range src.Properties {
typ := prop.Type
if b.options.allowMissingProperties {
typ = &schema.OptionalType{ElementType: typ}
}
properties[prop.Name] = b.schemaTypeToTypeOrConst(typ, prop)
}
return objType
case *schema.TokenType:
t := model.NewOpaqueType(src.Token)
if src.UnderlyingType != nil {
underlyingType := b.schemaTypeToType(src.UnderlyingType)
return model.NewUnionType(t, underlyingType)
}
return t
case *schema.InputType:
elementType := b.schemaTypeToType(src.ElementType)
resolvedElementType := b.schemaTypeToType(codegen.ResolvedType(src.ElementType))
return model.NewUnionTypeAnnotated([]model.Type{elementType, model.NewOutputType(resolvedElementType)}, src)
case *schema.OptionalType:
elementType := b.schemaTypeToType(src.ElementType)
return model.NewOptionalType(elementType)
case *schema.UnionType:
types := make([]model.Type, len(src.ElementTypes))
for i, src := range src.ElementTypes {
types[i] = b.schemaTypeToType(src)
}
if src.Discriminator != "" {
return model.NewUnionTypeAnnotated(types, src)
}
return model.NewUnionType(types...)
case *schema.ResourceType:
if t, ok := b.schemaTypes[src]; ok {
return t
}
properties := map[string]model.Type{}
objType := model.NewObjectType(properties, src)
b.schemaTypes[src] = objType
for _, prop := range src.Resource.Properties {
typ := prop.Type
if !prop.IsRequired() {
typ = &schema.OptionalType{ElementType: typ}
}
properties[prop.Name] = b.schemaTypeToTypeOrConst(typ, prop)
}
return objType
default:
switch src {
case schema.BoolType:
return model.BoolType
case schema.IntType:
return model.IntType
case schema.NumberType:
return model.NumberType
case schema.StringType:
return model.StringType
case schema.ArchiveType:
return ArchiveType
case schema.AssetType:
// Generated SDK code accepts assets or archives when schema.AssetType is
// specified. In an effort to keep PCL type checking in sync with our
// generated SDKs, we match the SDKs behavior when translating schema types to
// PCL types.
return AssetOrArchiveType
case schema.JSONType:
fallthrough
case schema.AnyType:
return model.DynamicType
default:
return model.NoneType
}
}
}
func (b *binder) schemaTypeToTypeOrConst(typ schema.Type, prop *schema.Property) model.Type {
t := b.schemaTypeToType(typ)
if prop.ConstValue != nil {
var value cty.Value
switch v := prop.ConstValue.(type) {
case bool:
value = cty.BoolVal(v)
case float64:
value = cty.NumberFloatVal(v)
case string:
value = cty.StringVal(v)
default:
contract.Failf("unexpected constant type %T", v)
}
t = model.NewConstType(t, value)
}
return t
}
var schemaArrayTypes = make(map[schema.Type]*schema.ArrayType)
// GetSchemaForType extracts the schema.Type associated with a model.Type, if any.
//
// The result may be a *schema.UnionType if multiple schema types are associated with the input type.
func GetSchemaForType(t model.Type) (schema.Type, bool) {
switch t := t.(type) {
case *model.ListType:
element, ok := GetSchemaForType(t.ElementType)
if !ok {
return nil, false
}
if t, ok := schemaArrayTypes[element]; ok {
return t, true
}
schemaArrayTypes[element] = &schema.ArrayType{ElementType: element}
return schemaArrayTypes[element], true
case *model.ObjectType:
if len(t.Annotations) == 0 {
return nil, false
}
for _, a := range t.Annotations {
if t, ok := a.(schema.Type); ok {
return t, true
}
}
return nil, false
case *model.OutputType:
return GetSchemaForType(t.ElementType)
case *model.PromiseType:
return GetSchemaForType(t.ElementType)
case *model.UnionType:
for _, a := range t.Annotations {
switch a := a.(type) {
case *schema.UnionType:
return a, true
case *schema.InputType:
return a, true
}
}
schemas := codegen.Set{}
for _, t := range t.ElementTypes {
if s, ok := GetSchemaForType(t); ok {
if union, ok := s.(*schema.UnionType); ok {
for _, s := range union.ElementTypes {
schemas.Add(s)
}
} else {
schemas.Add(s)
}
}
}
if len(schemas) == 0 {
return nil, false
}
schemaTypes := slice.Prealloc[schema.Type](len(schemas))
for t := range schemas {
schemaTypes = append(schemaTypes, t.(schema.Type))
}
if len(schemaTypes) == 1 {
return schemaTypes[0], true
}
return &schema.UnionType{ElementTypes: schemaTypes}, true
case *model.EnumType:
for _, t := range t.Annotations {
if t, ok := t.(enumSchemaType); ok {
contract.Assertf(t.Type != nil, "enum schema type must not be nil")
return t.Type, true
}
}
return nil, false
default:
return nil, false
}
}
// GetDiscriminatedUnionObjectMapping calculates a map of type names to object types for a given
// union type.
func GetDiscriminatedUnionObjectMapping(t *model.UnionType) map[string]model.Type {
mapping := map[string]model.Type{}
for _, t := range t.ElementTypes {
k, v := getDiscriminatedUnionObjectItem(t)
mapping[k] = v
}
return mapping
}
func getDiscriminatedUnionObjectItem(t model.Type) (string, model.Type) {
switch t := t.(type) {
case *model.ListType:
return getDiscriminatedUnionObjectItem(t.ElementType)
case *model.ObjectType:
if schemaType, ok := GetSchemaForType(t); ok {
if objType, ok := schemaType.(*schema.ObjectType); ok {
return objType.Token, t
}
}
case *model.OutputType:
return getDiscriminatedUnionObjectItem(t.ElementType)
case *model.PromiseType:
return getDiscriminatedUnionObjectItem(t.ElementType)
}
return "", nil
}
// EnumMember returns the name of the member that matches the given `value`. If
// no member if found, (nil, true) returned. If the query is nonsensical, either
// because no schema is associated with the EnumMember or if the type of value
// mismatches the type of the schema, (nil, false) is returned.
func EnumMember(t *model.EnumType, value cty.Value) (*schema.Enum, bool) {
srcBase, ok := GetSchemaForType(t)
if !ok {
return nil, false
}
src := srcBase.(*schema.EnumType)
switch {
case t.Type.Equals(model.StringType):
s := value.AsString()
for _, el := range src.Elements {
v := el.Value.(string)
if v == s {
return el, true
}
}
return nil, true
case t.Type.Equals(model.NumberType):
f, _ := value.AsBigFloat().Float64()
for _, el := range src.Elements {
if el.Value.(float64) == f {
return el, true
}
}
return nil, true
case t.Type.Equals(model.IntType):
f, _ := value.AsBigFloat().Int64()
for _, el := range src.Elements {
valueInt64, ok := el.Value.(int64)
if ok && valueInt64 == f {
return el, true
}
valueInt32, ok := el.Value.(int32)
if ok && int64(valueInt32) == f {
return el, true
}
}
return nil, true
default:
return nil, false
}
}
// GenEnum is a helper function when generating an enum.
// Given an enum, and instructions on what to do when you find a known value,
// and an unknown value, return a function that will generate an the given enum
// from the given expression.
//
// This function should probably live in the `codegen` namespace, but cannot
// because of import cycles.
func GenEnum(
t *model.EnumType,
from model.Expression,
safeEnum func(member *schema.Enum),
unsafeEnum func(from model.Expression),
) *hcl.Diagnostic {
known := cty.NilVal
if from, ok := from.(*model.TemplateExpression); ok && len(from.Parts) == 1 {
if from, ok := from.Parts[0].(*model.LiteralValueExpression); ok {
known = from.Value
}
}
if from, ok := from.(*model.LiteralValueExpression); ok {
known = from.Value
}
if known != cty.NilVal {
// If the value is known, but we can't find a member, we should have
// indicated a conversion is impossible when type checking.
member, ok := EnumMember(t, known)
contract.Assertf(ok,
"We have determined %s is a safe enum, which we define as "+
"being able to calculate a member for", t)
if member != nil {
safeEnum(member)
} else {
unsafeEnum(from)
knownVal := strings.Split(strings.Split(known.GoString(), "(")[1], ")")[0]
diag := &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("%v is not a valid value of the enum \"%v\"", knownVal, t.Token),
}
if members := enumMemberValues(t); len(members) > 0 {
diag.Detail = fmt.Sprintf("Valid members are %v", listToString(members))
}
return diag
}
} else {
unsafeEnum(from)
}
return nil
}
func enumMemberValues(t *model.EnumType) []interface{} {
srcBase, ok := GetSchemaForType(t)
if !ok {
return nil
}
src := srcBase.(*schema.EnumType)
members := make([]interface{}, len(src.Elements))
for i, el := range src.Elements {
members[i] = el.Value
}
return members
}
func listToString(l []interface{}) string {
vals := ""
for i, v := range l {
if i == 0 {
vals = fmt.Sprintf("\"%v\"", v)
} else {
vals = fmt.Sprintf("%s, \"%v\"", vals, v)
}
}
return vals
}