pulumi/pkg/codegen/go/gen_program_expressions.go

1245 lines
38 KiB
Go

package gen
import (
"bytes"
"fmt"
"io"
"math/big"
"strings"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/pcl"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/sdk/v3/go/common/slice"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
)
const keywordRange = "range"
func (g *generator) GetPrecedence(expr model.Expression) int {
// TODO: Current values copied from Node, update based on
// https://golang.org/ref/spec
switch expr := expr.(type) {
case *model.ConditionalExpression:
return 4
case *model.BinaryOpExpression:
switch expr.Operation {
case hclsyntax.OpLogicalOr:
return 5
case hclsyntax.OpLogicalAnd:
return 6
case hclsyntax.OpEqual, hclsyntax.OpNotEqual:
return 11
case hclsyntax.OpGreaterThan, hclsyntax.OpGreaterThanOrEqual, hclsyntax.OpLessThan,
hclsyntax.OpLessThanOrEqual:
return 12
case hclsyntax.OpAdd, hclsyntax.OpSubtract:
return 14
case hclsyntax.OpMultiply, hclsyntax.OpDivide, hclsyntax.OpModulo:
return 15
default:
contract.Failf("unexpected binary expression %v", expr)
}
case *model.UnaryOpExpression:
return 17
case *model.FunctionCallExpression:
switch expr.Name {
default:
return 20
}
case *model.ForExpression, *model.IndexExpression, *model.RelativeTraversalExpression, *model.SplatExpression,
*model.TemplateJoinExpression:
return 20
case *model.AnonymousFunctionExpression, *model.LiteralValueExpression, *model.ObjectConsExpression,
*model.ScopeTraversalExpression, *model.TemplateExpression, *model.TupleConsExpression:
return 22
default:
contract.Failf("unexpected expression %v of type %T", expr, expr)
}
return 0
}
// GenAnonymousFunctionExpression generates code for an AnonymousFunctionExpression.
func (g *generator) GenAnonymousFunctionExpression(w io.Writer, expr *model.AnonymousFunctionExpression) {
g.genAnonymousFunctionExpression(w, expr, nil, false)
}
func (g *generator) genAnonymousFunctionExpression(
w io.Writer,
expr *model.AnonymousFunctionExpression,
bodyPreamble []string,
inApply bool,
) {
g.Fgenf(w, "func(")
leadingSep := ""
for _, param := range expr.Signature.Parameters {
isInput := isInputty(param.Type)
g.Fgenf(w, "%s%s %s", leadingSep, makeValidIdentifier(param.Name), g.argumentTypeName(nil, param.Type, isInput))
leadingSep = ", "
}
retType := expr.Signature.ReturnType
if inApply {
retType = model.ResolveOutputs(retType)
}
retTypeName := g.argumentTypeName(nil, retType, false)
g.Fgenf(w, ") (%s, error) {\n", retTypeName)
for _, decl := range bodyPreamble {
g.Fgenf(w, "%s\n", decl)
}
body, temps := g.lowerExpression(expr.Body, retType)
g.genTempsMultiReturn(w, temps, retTypeName)
// g.Fgenf(w, "return %v, nil", body)
// fromBase64 special case
if b, ok := body.(*model.FunctionCallExpression); ok && b.Name == fromBase64Fn {
g.Fgenf(w, "value, _ := %v\n", b)
g.Fgenf(w, "return pulumi.String(value), nil")
} else if strings.HasPrefix(retTypeName, "pulumi") {
g.Fgenf(w, "return %s(%v), nil", retTypeName, body)
} else {
g.Fgenf(w, "return %v, nil", body)
}
g.Fgenf(w, "\n}")
}
func (g *generator) GenBinaryOpExpression(w io.Writer, expr *model.BinaryOpExpression) {
opstr, precedence := "", g.GetPrecedence(expr)
switch expr.Operation {
case hclsyntax.OpAdd:
opstr = "+"
case hclsyntax.OpDivide:
opstr = "/"
case hclsyntax.OpEqual:
opstr = "=="
case hclsyntax.OpGreaterThan:
opstr = ">"
case hclsyntax.OpGreaterThanOrEqual:
opstr = ">="
case hclsyntax.OpLessThan:
opstr = "<"
case hclsyntax.OpLessThanOrEqual:
opstr = "<="
case hclsyntax.OpLogicalAnd:
opstr = "&&"
case hclsyntax.OpLogicalOr:
opstr = "||"
case hclsyntax.OpModulo:
opstr = "%"
case hclsyntax.OpMultiply:
opstr = "*"
case hclsyntax.OpNotEqual:
opstr = "!="
case hclsyntax.OpSubtract:
opstr = "-"
default:
opstr, precedence = ",", 1
}
g.Fgenf(w, "%.[1]*[2]v %[3]v %.[1]*[4]o", precedence, expr.LeftOperand, opstr, expr.RightOperand)
}
func (g *generator) GenConditionalExpression(w io.Writer, expr *model.ConditionalExpression) {
// Ternary expressions are not supported in go so we need to allocate temp variables in the parent scope.
// This is handled by lower expression and rewriteTernaries
contract.Failf("unlowered conditional expression @ %v", expr.SyntaxNode().Range())
}
// GenForExpression generates code for a ForExpression.
func (g *generator) GenForExpression(w io.Writer, expr *model.ForExpression) {
g.genNYI(w, "For expression")
}
func (g *generator) genSafeEnum(w io.Writer, to *model.EnumType) func(member *schema.Enum) {
return func(member *schema.Enum) {
// We know the enum value at the call site, so we can directly stamp in a
// valid enum instance. We don't need to convert.
enumName := tokenToName(to.Token)
memberTag := member.Name
if memberTag == "" {
memberTag = member.Value.(string)
}
memberTag, err := makeSafeEnumName(memberTag, enumName)
contract.AssertNoErrorf(err, "Enum is invalid")
pkg, mod, _, _ := pcl.DecomposeToken(to.Token, to.SyntaxNode().Range())
mod = g.getModOrAlias(pkg, mod, mod)
g.Fgenf(w, "%s.%s", mod, memberTag)
}
}
func (g *generator) GenFunctionCallExpression(w io.Writer, expr *model.FunctionCallExpression) {
switch expr.Name {
case pcl.IntrinsicConvert:
from := expr.Args[0]
to := pcl.LowerConversion(from, expr.Signature.ReturnType)
output, isOutput := to.(*model.OutputType)
if isOutput {
to = output.ElementType
}
switch to := to.(type) {
case *model.EnumType:
var underlyingType string
switch {
case to.Type.Equals(model.StringType):
underlyingType = "string"
default:
panic(fmt.Sprintf(
"Unsafe enum conversions from type %s not implemented yet: %s => %s",
from.Type(), from, to))
}
pkg, mod, typ, _ := pcl.DecomposeToken(to.Token, to.SyntaxNode().Range())
mod = g.getModOrAlias(pkg, mod, mod)
enumTag := fmt.Sprintf("%s.%s", mod, typ)
if isOutput {
g.Fgenf(w,
"%.v.ApplyT(func(x *%[3]s) %[2]s { return %[2]s(*x) }).(%[2]sOutput)",
from, enumTag, underlyingType)
return
}
diag := pcl.GenEnum(to, from, g.genSafeEnum(w, to), func(from model.Expression) {
g.Fgenf(w, "%s(%v)", enumTag, from)
})
if diag != nil {
g.diagnostics = append(g.diagnostics, diag)
}
return
}
switch arg := from.(type) {
case *model.TupleConsExpression:
g.genTupleConsExpression(w, arg, expr.Type())
case *model.ObjectConsExpression:
isInput := false
g.genObjectConsExpression(w, arg, expr.Type(), isInput)
case *model.LiteralValueExpression:
g.genLiteralValueExpression(w, arg, expr.Type())
case *model.TemplateExpression:
g.genTemplateExpression(w, arg, expr.Type())
case *model.ScopeTraversalExpression:
g.genScopeTraversalExpression(w, arg, expr.Type())
default:
g.Fgenf(w, "%.v", expr.Args[0])
}
case pcl.IntrinsicApply:
g.genApply(w, expr)
case "element":
g.genNYI(w, "element")
case "entries":
g.genNYI(w, "call %v", expr.Name)
// switch model.ResolveOutputs(expr.Args[0].Type()).(type) {
// case *model.ListType, *model.TupleType:
// if call, ok := expr.Args[0].(*model.FunctionCallExpression); ok && call.Name == "range" {
// g.genRange(w, call, true)
// return
// }
// g.Fgenf(w, "%.20v.Select((v, k)", expr.Args[0])
// case *model.MapType, *model.ObjectType:
// g.genNYI(w, "MapOrObjectEntries")
// }
// g.Fgenf(w, " => new { Key = k, Value = v })")
case "fileArchive":
g.Fgenf(w, "pulumi.NewFileArchive(%.v)", expr.Args[0])
case "remoteArchive":
g.Fgenf(w, "pulumi.NewRemoteArchive(%.v)", expr.Args[0])
case "assetArchive":
g.Fgenf(w, "pulumi.NewAssetArchive(%.v)", expr.Args[0])
case "fileAsset":
g.Fgenf(w, "pulumi.NewFileAsset(%.v)", expr.Args[0])
case "stringAsset":
g.Fgenf(w, "pulumi.NewStringAsset(%.v)", expr.Args[0])
case "remoteAsset":
g.Fgenf(w, "pulumi.NewRemoteAsset(%.v)", expr.Args[0])
case "filebase64":
// Assuming the existence of the following helper method
g.Fgenf(w, "filebase64OrPanic(%v)", expr.Args[0])
case "filebase64sha256":
// Assuming the existence of the following helper method
g.Fgenf(w, "filebase64sha256OrPanic(%v)", expr.Args[0])
case "notImplemented":
g.Fgenf(w, "notImplemented(%v)", expr.Args[0])
case "singleOrNone":
g.Fgenf(w, "singleOrNone(%v)", expr.Args[0])
case pcl.Invoke:
if expr.Signature.MultiArgumentInputs {
panic(fmt.Errorf("go program-gen does not implement MultiArgumentInputs for function '%v'",
expr.Args[0]))
}
pkg, module, fn, diags := g.functionName(expr.Args[0])
contract.Assertf(len(diags) == 0, "We don't allow problems getting the function name")
if module == "" || module == "index" {
module = pkg
}
isOut, outArgs, outArgsType := pcl.RecognizeOutputVersionedInvoke(expr)
if isOut {
outTypeName, err := outputVersionFunctionArgTypeName(outArgsType, g.externalCache)
if err != nil {
// We create a diag instead of panicking since panics are caught in go
// format expressions.
g.diagnostics = append(g.diagnostics, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Error when generating an output-versioned Invoke",
Detail: fmt.Sprintf("underlying error: %v", err),
Subject: &hcl.Range{},
Context: &hcl.Range{},
Expression: nil,
EvalContext: &hcl.EvalContext{},
})
g.Fgenf(w, "%q", "failed") // Write a value to avoid syntax errors
return
}
g.Fgenf(w, "%s.%sOutput(ctx, ", module, fn)
g.genObjectConsExpressionWithTypeName(w, outArgs, outArgsType, outTypeName)
} else {
g.Fgenf(w, "%s.%s(ctx, ", module, fn)
g.Fgenf(w, "%.v", expr.Args[1])
}
optionsBag := ""
var buf bytes.Buffer
if len(expr.Args) == 3 {
g.Fgenf(&buf, ", %.v", expr.Args[2])
} else {
g.Fgenf(&buf, ", nil")
}
optionsBag = buf.String()
g.Fgenf(w, "%v)", optionsBag)
case "join":
g.Fgenf(w, "strings.Join(%v, %v)", expr.Args[1], expr.Args[0])
case "length":
g.Fgenf(w, "len(%.20v)", expr.Args[0])
case "lookup":
g.genNYI(w, "Lookup")
case keywordRange:
g.genNYI(w, "call %v", expr.Name)
// g.genRange(w, expr, false)
case "readFile":
// Assuming the existence of the following helper method located earlier in the preamble
g.Fgenf(w, "readFileOrPanic(%v)", expr.Args[0])
case "readDir":
contract.Failf("unlowered readDir function expression @ %v", expr.SyntaxNode().Range())
case "secret":
outputTypeName := "pulumi.Any"
if model.ResolveOutputs(expr.Type()) != model.DynamicType {
outputTypeName = g.argumentTypeName(nil, expr.Type(), false)
}
g.Fgenf(w, "pulumi.ToSecret(%v).(%sOutput)", expr.Args[0], outputTypeName)
case "unsecret":
outputTypeName := "pulumi.Any"
if model.ResolveOutputs(expr.Type()) != model.DynamicType {
outputTypeName = g.argumentTypeName(nil, expr.Type(), false)
}
g.Fgenf(w, "pulumi.Unsecret(%v).(%sOutput)", expr.Args[0], outputTypeName)
case "split":
g.genNYI(w, "call %v", expr.Name)
// g.Fgenf(w, "%.20v.Split(%v)", expr.Args[1], expr.Args[0])
case "toBase64":
g.Fgenf(w, "base64.StdEncoding.EncodeToString([]byte(%v))", expr.Args[0])
case fromBase64Fn:
g.Fgenf(w, "base64.StdEncoding.DecodeString(%v)", expr.Args[0])
case "toJSON":
contract.Failf("unlowered toJSON function expression @ %v", expr.SyntaxNode().Range())
case "mimeType":
g.Fgenf(w, "mime.TypeByExtension(path.Ext(%.v))", expr.Args[0])
case "sha1":
g.Fgenf(w, "sha1Hash(%v)", expr.Args[0])
case "goOptionalFloat64":
g.Fgenf(w, "pulumi.Float64Ref(%.v)", expr.Args[0])
case "goOptionalBool":
g.Fgenf(w, "pulumi.BoolRef(%.v)", expr.Args[0])
case "goOptionalInt":
g.Fgenf(w, "pulumi.IntRef(%.v)", expr.Args[0])
case "goOptionalString":
g.Fgenf(w, "pulumi.StringRef(%.v)", expr.Args[0])
case "stack":
g.Fgen(w, "ctx.Stack()")
case "project":
g.Fgen(w, "ctx.Project()")
case "cwd":
g.Fgen(w, "func(cwd string, err error) string { if err != nil { panic(err) }; return cwd }(os.Getwd())")
default:
g.genNYI(w, "call %v", expr.Name)
}
}
// Currently args type for output-versioned invokes are named
// `FOutputArgs`, but this is not yet understood by `tokenToType`. Use
// this function to compensate.
func outputVersionFunctionArgTypeName(t model.Type, cache *Cache) (string, error) {
schemaType, ok := pcl.GetSchemaForType(t)
if !ok {
return "", fmt.Errorf("No schema.Type type found for the given model.Type")
}
objType, ok := schemaType.(*schema.ObjectType)
if !ok {
return "", fmt.Errorf("Expected a schema.ObjectType, got %s", schemaType.String())
}
pkg := &pkgContext{
pkg: (&schema.Package{Name: "main"}).Reference(),
externalPackages: cache,
}
var ty string
if pkg.isExternalReference(objType) {
extPkg, _ := pkg.contextForExternalReference(objType)
ty = extPkg.tokenToType(objType.Token)
} else {
ty = pkg.tokenToType(objType.Token)
}
return fmt.Sprintf("%sOutputArgs", strings.TrimSuffix(ty, "Args")), nil
}
func (g *generator) GenIndexExpression(w io.Writer, expr *model.IndexExpression) {
g.Fgenf(w, "%.20v[%.v]", expr.Collection, expr.Key)
}
func (g *generator) GenLiteralValueExpression(w io.Writer, expr *model.LiteralValueExpression) {
g.genLiteralValueExpression(w, expr, expr.Type())
}
func (g *generator) genLiteralValueExpression(w io.Writer, expr *model.LiteralValueExpression, destType model.Type) {
exprType := expr.Type()
if cns, ok := exprType.(*model.ConstType); ok {
exprType = cns.Type
}
if exprType == model.NoneType {
g.Fgen(w, "nil")
return
}
argTypeName := g.argumentTypeName(expr, destType, false)
isPulumiType := strings.HasPrefix(argTypeName, "pulumi.")
switch exprType {
case model.BoolType:
if isPulumiType {
g.Fgenf(w, "%s(%v)", argTypeName, expr.Value.True())
} else {
g.Fgenf(w, "%v", expr.Value.True())
}
case model.NumberType, model.IntType:
bf := expr.Value.AsBigFloat()
if i, acc := bf.Int64(); acc == big.Exact {
if isPulumiType {
g.Fgenf(w, "%s(%d)", argTypeName, i)
} else {
g.Fgenf(w, "%d", i)
}
} else {
f, _ := bf.Float64()
if isPulumiType {
g.Fgenf(w, "%s(%g)", argTypeName, f)
} else {
g.Fgenf(w, "%g", f)
}
}
case model.StringType:
strVal := expr.Value.AsString()
if isPulumiType {
g.Fgenf(w, "%s(", argTypeName)
g.genStringLiteral(w, strVal, true /* allow raw */)
g.Fgenf(w, ")")
} else {
g.genStringLiteral(w, strVal, true /* allow raw */)
}
default:
contract.Failf("unexpected opaque type in GenLiteralValueExpression: %v (%v)", destType,
expr.SyntaxNode().Range())
}
}
func (g *generator) GenObjectConsExpression(w io.Writer, expr *model.ObjectConsExpression) {
switch argType := expr.Type().(type) {
case *model.ObjectType:
if len(argType.Annotations) > 0 {
if configMetadata, ok := argType.Annotations[0].(*ObjectTypeFromConfigMetadata); ok {
g.genObjectConsExpressionWithTypeName(w, expr, expr.Type(), configMetadata.TypeName)
return
}
}
}
isInput := false
g.genObjectConsExpression(w, expr, expr.Type(), isInput)
}
func (g *generator) genObjectConsExpression(
w io.Writer,
expr *model.ObjectConsExpression,
destType model.Type,
isInput bool,
) {
isInput = isInput || isInputty(destType)
typeName := g.argumentTypeName(expr, destType, isInput)
if schemaType, ok := pcl.GetSchemaForType(destType); ok {
if obj, ok := codegen.UnwrapType(schemaType).(*schema.ObjectType); ok {
if g.useLookupInvokeForm(obj.Token) {
typeName = strings.Replace(typeName, ".Get", ".Lookup", 1)
}
}
}
g.genObjectConsExpressionWithTypeName(w, expr, destType, typeName)
}
func (g *generator) genObjectConsExpressionWithTypeName(
w io.Writer,
expr *model.ObjectConsExpression,
destType model.Type,
typeName string,
) {
if len(expr.Items) == 0 {
g.Fgenf(w, "nil")
return
}
var temps []interface{}
// TODO: @pgavlin --- ineffectual assignment, was there some work in flight here?
// if strings.HasSuffix(typeName, "Args") {
// isInput = true
// }
// // invokes are not inputty
// if strings.Contains(typeName, ".Lookup") || strings.Contains(typeName, ".Get") {
// isInput = false
// }
isMap := strings.HasPrefix(typeName, "map[")
// TODO: retrieve schema and propagate optionals to emit bool ptr, etc.
// first lower all inner expressions and emit temps
for i, item := range expr.Items {
// don't treat keys as inputs
//nolint:revive
k, kTemps := g.lowerExpression(item.Key, item.Key.Type())
temps = append(temps, kTemps...)
item.Key = k
x, xTemps := g.lowerExpression(item.Value, item.Value.Type())
x, invokeTemps := g.rewriteInlineInvokes(x)
temps = append(temps, xTemps...)
for _, t := range invokeTemps {
temps = append(temps, t)
}
item.Value = x
expr.Items[i] = item
}
g.genTemps(w, temps)
if g.inGenTupleConExprListArgs {
if g.isPtrArg {
g.Fgenf(w, "&%s", typeName)
}
} else if isMap || !strings.HasSuffix(typeName, "Args") || strings.HasSuffix(typeName, "OutputArgs") {
g.Fgenf(w, "%s", typeName)
} else {
g.Fgenf(w, "&%s", typeName)
}
g.Fgenf(w, "{\n")
for _, item := range expr.Items {
if lit, ok := g.literalKey(item.Key); ok {
if isMap || strings.HasSuffix(typeName, "Map") {
g.Fgenf(w, "\"%s\"", lit)
} else {
g.Fgenf(w, "%s", Title(lit))
}
} else {
g.Fgenf(w, "%.v", item.Key)
}
g.Fgenf(w, ": %.v,\n", item.Value)
}
g.Fgenf(w, "}")
}
func (g *generator) GenRelativeTraversalExpression(w io.Writer, expr *model.RelativeTraversalExpression) {
g.Fgenf(w, "%.20v", expr.Source)
isRootResource := false
if ie, ok := expr.Source.(*model.IndexExpression); ok {
if se, ok := ie.Collection.(*model.ScopeTraversalExpression); ok {
if _, ok := se.Parts[0].(*pcl.Resource); ok {
isRootResource = true
}
}
}
g.genRelativeTraversal(w, expr.Traversal, expr.Parts, isRootResource)
}
func (g *generator) GenScopeTraversalExpression(w io.Writer, expr *model.ScopeTraversalExpression) {
g.genScopeTraversalExpression(w, expr, expr.Type())
}
func (g *generator) genScopeTraversalExpression(
w io.Writer, expr *model.ScopeTraversalExpression, destType model.Type,
) {
rootName := expr.RootName
if _, ok := expr.Parts[0].(*model.SplatVariable); ok {
rootName = "val0"
}
genIDCall := false
isInput := false
if schemaType, ok := pcl.GetSchemaForType(destType); ok {
_, isInput = schemaType.(*schema.InputType)
}
var sourceIsPlain bool
switch root := expr.Parts[0].(type) {
case *pcl.Resource:
isInput = false
if _, ok := pcl.GetSchemaForType(root.InputType); ok {
// convert .id into .ID()
last := expr.Traversal[len(expr.Traversal)-1]
if attr, ok := last.(hcl.TraverseAttr); ok && attr.Name == "id" {
genIDCall = true
expr.Traversal = expr.Traversal[:len(expr.Traversal)-1]
}
}
case *pcl.LocalVariable:
if root, ok := root.Definition.Value.(*model.FunctionCallExpression); ok && !pcl.IsOutputVersionInvokeCall(root) {
sourceIsPlain = true
}
case *pcl.ConfigVariable:
if g.isComponent {
// config variables of components are always of type Input<T>
// these shouldn't be wrapped in a pulumi.String(...), pulumi.Int(...) etc. functions
g.Fgenf(w, "args.%s", Title(rootName))
isRootResource := false
g.genRelativeTraversal(w, expr.Traversal.SimpleSplit().Rel, expr.Parts[1:], isRootResource)
return
}
}
// TODO if it's an array type, we need a lowering step to turn []string -> pulumi.StringArray
if isInput {
argTypeName := g.argumentTypeName(expr, expr.Type(), isInput)
if strings.HasSuffix(argTypeName, "Array") {
destTypeName := g.argumentTypeName(expr, destType, isInput)
// `argTypeName` == `destTypeName` and `argTypeName` ends with `Array`, we
// know that `destType` is an outputty type. If the source is plain (and thus
// not outputty), then the types can never line up and we will need a
// conversion helper method.
if argTypeName != destTypeName || sourceIsPlain {
// use a helper to transform prompt arrays into inputty arrays
var helper *promptToInputArrayHelper
if h, ok := g.arrayHelpers[argTypeName]; ok {
helper = h
} else {
// helpers are emitted at the end in the postamble step
helper = &promptToInputArrayHelper{
destType: argTypeName,
}
g.arrayHelpers[argTypeName] = helper
}
// Wrap the emitted expression in a call to the generated helper function.
g.Fgenf(w, "%s(", helper.getFnName())
defer g.Fgenf(w, ")")
}
} else {
// Wrap the emitted expression in a type conversion.
g.Fgenf(w, "%s(", g.argumentTypeName(expr, expr.Type(), isInput))
defer g.Fgenf(w, ")")
}
}
// TODO: this isn't exhaustively correct as "range" could be a legit var name
// instead we should probably use a fn call expression here for entries/range
// similar to other languages
if rootName == keywordRange {
part := expr.Traversal[1].(hcl.TraverseAttr).Name
switch part {
case "value":
g.Fgenf(w, "val0")
case "key":
g.Fgenf(w, "key0")
default:
contract.Failf("unexpected traversal on range expression: %s", part)
}
} else {
g.Fgen(w, makeValidIdentifier(rootName))
isRootResource := false
g.genRelativeTraversal(w, expr.Traversal.SimpleSplit().Rel, expr.Parts[1:], isRootResource)
}
if genIDCall {
g.Fgenf(w, ".ID()")
}
}
// GenSplatExpression generates code for a SplatExpression.
func (g *generator) GenSplatExpression(w io.Writer, expr *model.SplatExpression) {
contract.Failf("unlowered splat expression @ %v", expr.SyntaxNode().Range())
}
// GenTemplateExpression generates code for a TemplateExpression.
func (g *generator) GenTemplateExpression(w io.Writer, expr *model.TemplateExpression) {
g.genTemplateExpression(w, expr, expr.Type())
}
func (g *generator) genTemplateExpression(w io.Writer, expr *model.TemplateExpression, destType model.Type) {
if len(expr.Parts) == 1 {
if lit, ok := expr.Parts[0].(*model.LiteralValueExpression); ok && model.StringType.AssignableFrom(lit.Type()) {
g.genLiteralValueExpression(w, lit, destType)
}
// If we have a template expression that doesn't start with a string, it indicates
// an invalid *pcl.Program. Instead of crashing, we continue.
return
}
argTypeName := g.argumentTypeName(expr, destType, false)
isPulumiType := strings.HasPrefix(argTypeName, "pulumi.")
if isPulumiType {
g.Fgenf(w, "%s(", argTypeName)
defer g.Fgenf(w, ")")
}
var fmtStr strings.Builder
args := new(bytes.Buffer)
canBeRaw := true
for _, v := range expr.Parts {
if lit, ok := v.(*model.LiteralValueExpression); ok && lit.Value.Type().Equals(cty.String) {
str := lit.Value.AsString()
// We don't want to accidentally embed a formatting directive in our
// formatting string.
if !strings.ContainsRune(str, '%') {
if canBeRaw && strings.ContainsRune(str, '`') {
canBeRaw = false
}
// Build the formatting string
fmtStr.WriteString(str)
continue
}
}
// v cannot be directly inserted into the formatting string, so put it in the
// argument list.
fmtStr.WriteString("%v")
g.Fgenf(args, ", %.v", v)
}
g.Fgenf(w, "fmt.Sprintf(")
g.genStringLiteral(w, fmtStr.String(), canBeRaw)
_, err := args.WriteTo(w)
contract.AssertNoErrorf(err, "Failed to write arguments")
g.Fgenf(w, ")")
}
// GenTemplateJoinExpression generates code for a TemplateJoinExpression.
func (g *generator) GenTemplateJoinExpression(w io.Writer, expr *model.TemplateJoinExpression) { /*TODO*/
}
func (g *generator) GenTupleConsExpression(w io.Writer, expr *model.TupleConsExpression) {
g.genTupleConsExpression(w, expr, expr.Type())
}
// GenTupleConsExpression generates code for a TupleConsExpression.
func (g *generator) genTupleConsExpression(w io.Writer, expr *model.TupleConsExpression, destType model.Type) {
isInput := isInputty(destType)
var temps []interface{}
for i, item := range expr.Expressions {
item, itemTemps := g.lowerExpression(item, item.Type())
item, invokeTemps := g.rewriteInlineInvokes(item)
temps = append(temps, itemTemps...)
for _, t := range invokeTemps {
temps = append(temps, t)
}
expr.Expressions[i] = item
}
g.genTemps(w, temps)
argType := g.argumentTypeName(expr, destType, isInput)
// don't need to generate type for list args if not a pointer, i.e. []ec2.SubnetSpecArgs{ {Type: ...} }
// unless it contains an interface, i.e. []map[string]interface{ map[string]interface{"key": "val"} }
if strings.HasPrefix(argType, "[]") && !strings.Contains(argType, "interface{}") {
defer func(b bool) { g.inGenTupleConExprListArgs = b }(g.inGenTupleConExprListArgs)
g.inGenTupleConExprListArgs = true
if strings.HasPrefix(argType, "[]*") {
defer func(b bool) { g.isPtrArg = b }(g.isPtrArg)
g.isPtrArg = true
}
}
g.Fgenf(w, "%s{\n", argType)
switch len(expr.Expressions) {
case 0:
// empty array
break
default:
for _, v := range expr.Expressions {
g.Fgenf(w, "%v,\n", v)
}
}
g.Fgenf(w, "}")
}
func (g *generator) GenUnaryOpExpression(w io.Writer, expr *model.UnaryOpExpression) {
opstr, precedence := "", g.GetPrecedence(expr)
switch expr.Operation {
case hclsyntax.OpLogicalNot:
opstr = "!"
case hclsyntax.OpNegate:
opstr = "-"
}
g.Fgenf(w, "%[2]v%.[1]*[3]v", precedence, opstr, expr.Operand)
}
// argumentTypeName computes the go type for the given expression and model type.
func (g *generator) argumentTypeName(expr model.Expression, destType model.Type, isInput bool) (result string) {
if cns, ok := destType.(*model.ConstType); ok {
destType = cns.Type
}
// This can happen with null literals.
if destType == model.NoneType {
return ""
}
if schemaType, ok := pcl.GetSchemaForType(destType); ok {
return (&pkgContext{
pkg: (&schema.Package{Name: "main"}).Reference(),
externalPackages: g.externalCache,
}).argsType(schemaType)
}
switch destType := destType.(type) {
case *model.OpaqueType:
switch *destType {
case *model.IntType:
if isInput {
return "pulumi.Int"
}
return "int"
case *model.NumberType:
if isInput {
return "pulumi.Float64"
}
return "float64"
case *model.StringType:
if isInput {
return "pulumi.String"
}
return "string"
case *model.BoolType:
if isInput {
return "pulumi.Bool"
}
return "bool"
case *model.DynamicType:
if isInput {
return "pulumi.Any"
}
return "interface{}"
default:
return string(*destType)
}
case *model.ObjectType:
if isInput {
// check for element type uniformity and return appropriate type if so
allSameType := true
var elmType string
for _, v := range destType.Properties {
valType := g.argumentTypeName(nil, v, true)
if elmType != "" && elmType != valType {
allSameType = false
break
}
elmType = valType
}
if allSameType && elmType != "" {
return fmt.Sprintf("%sMap", elmType)
}
return "pulumi.Map"
}
return "map[string]interface{}"
case *model.MapType:
valType := g.argumentTypeName(nil, destType.ElementType, isInput)
if isInput {
if Title(valType) == "pulumi.Any" {
return "pulumi.Map"
}
return fmt.Sprintf("pulumi.%sMap", Title(valType))
}
return fmt.Sprintf("map[string]%s", valType)
case *model.ListType:
argTypeName := g.argumentTypeName(nil, destType.ElementType, isInput)
if strings.HasPrefix(argTypeName, "pulumi.") && argTypeName != "pulumi.Resource" {
if argTypeName == "pulumi.Any" {
return "pulumi.Array"
}
return fmt.Sprintf("%sArray", argTypeName)
}
return fmt.Sprintf("[]%s", argTypeName)
case *model.TupleType:
// attempt to collapse tuple types. intentionally does not use model.UnifyTypes
// correct go code requires all types to match, or use of interface{}
var elmType model.Type
for i, t := range destType.ElementTypes {
if i == 0 {
elmType = t
if cns, ok := elmType.(*model.ConstType); ok {
elmType = cns.Type
}
continue
}
if !elmType.AssignableFrom(t) {
elmType = nil
break
}
}
if elmType != nil {
argTypeName := g.argumentTypeName(nil, elmType, isInput)
if strings.HasPrefix(argTypeName, "pulumi.") && argTypeName != "pulumi.Resource" {
if argTypeName == "pulumi.Any" {
return "pulumi.Array"
}
return fmt.Sprintf("%sArray", argTypeName)
}
return fmt.Sprintf("[]%s", argTypeName)
}
if isInput {
return "pulumi.Array"
}
return "[]interface{}"
case *model.OutputType:
isInput = true
return g.argumentTypeName(expr, destType.ElementType, isInput)
case *model.UnionType:
for _, ut := range destType.ElementTypes {
isOptional := false
// check if the union contains none, which indicates this is an optional value
for _, ut := range destType.ElementTypes {
if ut.Equals(model.NoneType) {
isOptional = true
}
}
switch ut := ut.(type) {
case *model.OpaqueType:
if isOptional {
return g.argumentTypeNamePtr(expr, ut, isInput)
}
return g.argumentTypeName(expr, ut, isInput)
case *model.ConstType:
return g.argumentTypeName(expr, ut.Type, isInput)
case *model.TupleType:
return g.argumentTypeName(expr, ut, isInput)
}
}
return "interface{}"
case *model.PromiseType:
return g.argumentTypeName(expr, destType.ElementType, isInput)
default:
contract.Failf("unexpected destType type %T", destType)
}
return ""
}
func (g *generator) argumentTypeNamePtr(expr model.Expression, destType model.Type, isInput bool) (result string) {
res := g.argumentTypeName(expr, destType, isInput)
return "*" + res
}
func (g *generator) genRelativeTraversal(w io.Writer,
traversal hcl.Traversal, parts []model.Traversable, isRootResource bool,
) {
for i, part := range traversal {
var key cty.Value
switch part := part.(type) {
case hcl.TraverseAttr:
key = cty.StringVal(part.Name)
case hcl.TraverseIndex:
key = part.Key
default:
contract.Failf("unexpected traversal part of type %T (%v)", part, part.SourceRange())
}
// TODO handle optionals in go
// if model.IsOptionalType(model.GetTraversableType(parts[i])) {
// g.Fgen(w, "?")
// }
switch key.Type() {
case cty.String:
shouldConvert := isRootResource
if _, ok := parts[i].(*model.OutputType); ok {
shouldConvert = true
}
if key.AsString() == "id" && shouldConvert {
g.Fgenf(w, ".ID()")
} else {
g.Fgenf(w, ".%s", Title(key.AsString()))
}
case cty.Number:
idx, _ := key.AsBigFloat().Int64()
g.Fgenf(w, "[%d]", idx)
default:
contract.Failf("unexpected traversal key of type %T (%v)", key, key.AsString())
}
}
}
type nameInfo int
func (nameInfo) Format(name string) string {
// TODO
return name
}
// lowerExpression amends the expression with intrinsics for Go generation.
func (g *generator) lowerExpression(expr model.Expression, typ model.Type) (
model.Expression, []interface{},
) {
expr = pcl.RewritePropertyReferences(expr)
expr, diags := pcl.RewriteApplies(expr, nameInfo(0), false /*TODO*/)
expr, sTemps, splatDiags := g.rewriteSplat(expr, g.splatSpiller)
expr, convertDiags := pcl.RewriteConversions(expr, typ)
expr, tTemps, ternDiags := g.rewriteTernaries(expr, g.ternaryTempSpiller)
expr, jTemps, jsonDiags := g.rewriteToJSON(expr)
expr, rTemps, readDirDiags := g.rewriteReadDir(expr, g.readDirTempSpiller)
expr, oTemps, optDiags := g.rewriteOptionals(expr, g.optionalSpiller)
bufferSize := len(tTemps) + len(jTemps) + len(rTemps) + len(sTemps) + len(oTemps)
temps := slice.Prealloc[interface{}](bufferSize)
for _, t := range tTemps {
temps = append(temps, t)
}
for _, t := range jTemps {
temps = append(temps, t)
}
for _, t := range rTemps {
temps = append(temps, t)
}
for _, t := range sTemps {
temps = append(temps, t)
}
for _, t := range oTemps {
temps = append(temps, t)
}
diags = append(diags, convertDiags...)
diags = append(diags, ternDiags...)
diags = append(diags, jsonDiags...)
diags = append(diags, readDirDiags...)
diags = append(diags, splatDiags...)
diags = append(diags, optDiags...)
g.diagnostics = g.diagnostics.Extend(diags)
return expr, temps
}
func (g *generator) genNYI(w io.Writer, reason string, vs ...interface{}) {
message := fmt.Sprintf("not yet implemented: %s", fmt.Sprintf(reason, vs...))
g.diagnostics = append(g.diagnostics, &hcl.Diagnostic{
Severity: hcl.DiagWarning,
Summary: message,
Detail: message,
})
g.Fgenf(w, "\"TODO: %s\"", fmt.Sprintf(reason, vs...))
}
func (g *generator) genApply(w io.Writer, expr *model.FunctionCallExpression) {
// Extract the list of outputs and the continuation expression from the `__apply` arguments.
applyArgs, then := pcl.ParseApplyCall(expr)
isInput := false
retType := g.argumentTypeName(nil, then.Signature.ReturnType, isInput)
// TODO account for outputs in other namespaces like aws
// TODO[pulumi/pulumi#8453] incomplete pattern code below.
var typeAssertion string
if retType == "[]string" {
typeAssertion = ".(pulumi.StringArrayOutput)"
} else {
if strings.HasPrefix(retType, "*") {
retType = Title(strings.TrimPrefix(retType, "*")) + "Ptr"
switch then.Body.(type) {
case *model.ScopeTraversalExpression:
traversal := then.Body.(*model.ScopeTraversalExpression)
traversal.RootName = "&" + traversal.RootName
then.Body = traversal
}
}
typeAssertion = fmt.Sprintf(".(%sOutput)", retType)
if !strings.Contains(retType, ".") {
typeAssertion = fmt.Sprintf(".(pulumi.%sOutput)", Title(retType))
}
}
if len(applyArgs) == 1 {
// If we only have a single output, just generate a normal `.Apply`
g.Fgenf(w, "%.v.ApplyT(%.v)%s", applyArgs[0], then, typeAssertion)
} else {
g.Fgenf(w, "pulumi.All(%.v", applyArgs[0])
applyArgs = applyArgs[1:]
for _, a := range applyArgs {
g.Fgenf(w, ",%.v", a)
}
allApplyThen, typeConvDecls := g.rewriteThenForAllApply(then)
g.Fgenf(w, ").ApplyT(")
g.genAnonymousFunctionExpression(w, allApplyThen, typeConvDecls, true)
g.Fgenf(w, ")%s", typeAssertion)
}
}
// rewriteThenForAllApply rewrites an apply func after a .All replacing params with []interface{}
// other languages like javascript take advantage of destructuring to simplify All.Apply
// by generating something like [a1, a2, a3]
// Go doesn't support this syntax so we create a set of var decls with type assertions
// to prepend to the body: a1 := _args[0].(string) ... etc.
func (g *generator) rewriteThenForAllApply(
then *model.AnonymousFunctionExpression,
) (*model.AnonymousFunctionExpression, []string) {
typeConvDecls := slice.Prealloc[string](len(then.Parameters))
for i, v := range then.Parameters {
typ := g.argumentTypeName(nil, v.VariableType, false)
decl := fmt.Sprintf("%s := _args[%d].(%s)", v.Name, i, typ)
typeConvDecls = append(typeConvDecls, decl)
}
// dummy type that will produce []interface{} for argumentTypeName
interfaceArrayType := &model.TupleType{
ElementTypes: []model.Type{
model.BoolType, model.StringType, model.IntType,
},
}
then.Parameters = []*model.Variable{{
Name: "_args",
VariableType: interfaceArrayType,
}}
then.Signature.Parameters = []model.Parameter{{
Name: "_args",
Type: interfaceArrayType,
}}
return then, typeConvDecls
}
// Writes a Go string literal.
// The literal will be a raw string literal if allowRaw is true
// and the string is long enough to benefit from it.
func (g *generator) genStringLiteral(w io.Writer, v string, allowRaw bool) {
// If the string is longer than 50 characters,
// contains at least 5 newlines,
// and does not contain a backtick,
// use a backtick string literal for readability.
canBeRaw := len(v) > 50 &&
strings.Count(v, "\n") >= 5 &&
!strings.Contains(v, "`")
if allowRaw && canBeRaw {
fmt.Fprintf(w, "`%s`", v)
return
}
g.Fgen(w, "\"")
g.Fgen(w, g.escapeString(v))
g.Fgen(w, "\"")
}
func (g *generator) escapeString(v string) string {
builder := strings.Builder{}
for _, c := range v {
if c == '"' || c == '\\' {
builder.WriteRune('\\')
}
if c == '\n' {
builder.WriteRune('\\')
builder.WriteRune('n')
continue
}
builder.WriteRune(c)
}
return builder.String()
}
//nolint:lll
func isInputty(destType model.Type) bool {
// TODO this needs to be more robust, likely the inverse of:
// https://github.com/pulumi/pulumi/blob/5330c97684cad78bcc60d8867f1b28704bd8a555/pkg/codegen/hcl2/model/type_eventuals.go#L244
switch destType := destType.(type) {
case *model.UnionType:
for _, t := range destType.ElementTypes {
if _, ok := t.(*model.OutputType); ok {
return true
}
}
case *model.OutputType:
return true
}
return false
}
func (g *generator) literalKey(x model.Expression) (string, bool) {
strKey := ""
switch x := x.(type) {
case *model.LiteralValueExpression:
if model.StringType.AssignableFrom(x.Type()) {
strKey = x.Value.AsString()
break
}
var buf bytes.Buffer
g.GenLiteralValueExpression(&buf, x)
return buf.String(), true
case *model.TemplateExpression:
if len(x.Parts) == 1 {
if lit, ok := x.Parts[0].(*model.LiteralValueExpression); ok && model.StringType.AssignableFrom(lit.Type()) {
strKey = lit.Value.AsString()
break
}
}
return "", false
default:
return "", false
}
return strKey, true
}
// functionName computes the go package, module, and name for the given function token.
func (g *generator) functionName(tokenArg model.Expression) (string, string, string, hcl.Diagnostics) {
token := tokenArg.(*model.TemplateExpression).Parts[0].(*model.LiteralValueExpression).Value.AsString()
tokenRange := tokenArg.SyntaxNode().Range()
// Compute the resource type from the Pulumi type token.
pkg, module, member, diagnostics := pcl.DecomposeToken(token, tokenRange)
if strings.HasPrefix(member, "get") {
if g.useLookupInvokeForm(token) {
member = strings.Replace(member, "get", "lookup", 1)
}
}
modOrAlias := g.getModOrAlias(pkg, module, module)
mod := strings.ReplaceAll(modOrAlias, "/", ".")
return pkg, mod, Title(member), diagnostics
}
var functionPackages = map[string][]string{
"join": {"strings"},
"mimeType": {"mime", "path"},
"readDir": {"os"},
"readFile": {"os"},
"filebase64": {"encoding/base64", "os"},
"toBase64": {"encoding/base64"},
"fromBase64": {"encoding/base64"},
"toJSON": {"encoding/json"},
"sha1": {"fmt", "crypto/sha1"},
"filebase64sha256": {"fmt", "crypto/sha256", "os"},
"cwd": {"os"},
"singleOrNone": {"fmt"},
}
func (g *generator) genFunctionPackages(x *model.FunctionCallExpression) []string {
return functionPackages[x.Name]
}