pulumi/pkg/codegen/dotnet/gen_program_expressions.go

1158 lines
36 KiB
Go

// Copyright 2016-2020, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package dotnet
import (
"fmt"
"io"
"math/big"
"strings"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/pcl"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
)
type nameInfo int
func (nameInfo) Format(name string) string {
return makeValidIdentifier(name)
}
func (g *generator) rewriteExpression(expr model.Expression, typ model.Type, rewriteApplies bool) model.Expression {
expr = pcl.RewritePropertyReferences(expr)
var diags hcl.Diagnostics
if rewriteApplies {
skipToJSONWhenRewritingApplies := true
expr, diags = pcl.RewriteAppliesWithSkipToJSON(expr, nameInfo(0), !g.asyncInit, skipToJSONWhenRewritingApplies)
}
expr, convertDiags := pcl.RewriteConversions(expr, typ)
diags = diags.Extend(convertDiags)
if g.asyncInit {
expr = g.awaitInvokes(expr)
} else {
expr = g.outputInvokes(expr)
}
g.diagnostics = g.diagnostics.Extend(diags)
return expr
}
// lowerExpression amends the expression with intrinsics for C# generation.
func (g *generator) lowerExpression(expr model.Expression, typ model.Type) model.Expression {
rewriteApplies := true
return g.rewriteExpression(expr, typ, rewriteApplies)
}
// lowerExpressionWithoutApplies is the same as lowerExpression
// but without rewriting applies. Made especially for function invokes that are returning outputs
func (g *generator) lowerExpressionWithoutApplies(expr model.Expression, typ model.Type) model.Expression {
rewriteApplies := false
return g.rewriteExpression(expr, typ, rewriteApplies)
}
// awaitInvokes wraps each call to `invoke` with a call to the `await` intrinsic. This rewrite should only be used
// if we are generating an async Initialize, in which case the apply rewriter should also be configured not to treat
// promises as eventuals. Note that this depends on the fact that invokes are the only way to introduce promises
// in to a Pulumi program; if this changes in the future, this transform will need to be applied in a more general way
// (e.g. by the apply rewriter).
func (g *generator) awaitInvokes(x model.Expression) model.Expression {
contract.Assertf(g.asyncInit,
"awaitInvokes can be used only if we are generating an async Initialize")
rewriter := func(x model.Expression) (model.Expression, hcl.Diagnostics) {
// Ignore the node if it is not a call to invoke.
call, ok := x.(*model.FunctionCallExpression)
if !ok || call.Name != pcl.Invoke {
return x, nil
}
if _, isPromise := call.Type().(*model.PromiseType); isPromise {
return newAwaitCall(call), nil
}
return call, nil
}
x, diags := model.VisitExpression(x, model.IdentityVisitor, rewriter)
contract.Assertf(len(diags) == 0, "unexpected diagnostics: %v", diags)
return x
}
// outputInvokes wraps each call to `invoke` with a call to the `output` intrinsic. This rewrite should only be used if
// resources are instantiated within a stack constructor, where `await` operator is not available. We want to avoid the
// nastiness of working with raw `Task` and wrap it into Pulumi's Output immediately to be able to `Apply` on it.
// Note that this depends on the fact that invokes are the only way to introduce promises
// in to a Pulumi program; if this changes in the future, this transform will need to be applied in a more general way
// (e.g. by the apply rewriter).
func (g *generator) outputInvokes(x model.Expression) model.Expression {
rewriter := func(x model.Expression) (model.Expression, hcl.Diagnostics) {
// Ignore the node if it is not a call to invoke.
call, ok := x.(*model.FunctionCallExpression)
if !ok || call.Name != pcl.Invoke {
return x, nil
}
if call.Type() == model.DynamicType {
// ignore if the return type of the invoke is dynamic
// this means that we are working with an unknown invoke
return x, nil
}
_, isOutput := call.Type().(*model.OutputType)
if isOutput {
return x, nil
}
_, isPromise := call.Type().(*model.PromiseType)
contract.Assertf(isPromise, "invoke should return a promise, got %v", call.Type())
return newOutputCall(call), nil
}
x, diags := model.VisitExpression(x, model.IdentityVisitor, rewriter)
contract.Assertf(len(diags) == 0, "unexpected diagnostics: %v", diags)
return x
}
func (g *generator) GetPrecedence(expr model.Expression) int {
// TODO(msh): Current values copied from Node, update based on
// https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/
switch expr := expr.(type) {
case *model.ConditionalExpression:
return 4
case *model.BinaryOpExpression:
switch expr.Operation {
case hclsyntax.OpLogicalOr:
return 5
case hclsyntax.OpLogicalAnd:
return 6
case hclsyntax.OpEqual, hclsyntax.OpNotEqual:
return 11
case hclsyntax.OpGreaterThan, hclsyntax.OpGreaterThanOrEqual, hclsyntax.OpLessThan,
hclsyntax.OpLessThanOrEqual:
return 12
case hclsyntax.OpAdd, hclsyntax.OpSubtract:
return 14
case hclsyntax.OpMultiply, hclsyntax.OpDivide, hclsyntax.OpModulo:
return 15
default:
contract.Failf("unexpected binary expression %v", expr)
}
case *model.UnaryOpExpression:
return 17
case *model.FunctionCallExpression:
switch expr.Name {
case intrinsicAwait:
return 17
default:
return 20
}
case *model.ForExpression, *model.IndexExpression, *model.RelativeTraversalExpression, *model.SplatExpression,
*model.TemplateJoinExpression:
return 20
case *model.AnonymousFunctionExpression, *model.LiteralValueExpression, *model.ObjectConsExpression,
*model.ScopeTraversalExpression, *model.TemplateExpression, *model.TupleConsExpression:
return 22
default:
contract.Failf("unexpected expression %v of type %T", expr, expr)
}
return 0
}
func (g *generator) GenAnonymousFunctionExpression(w io.Writer, expr *model.AnonymousFunctionExpression) {
switch len(expr.Signature.Parameters) {
case 0:
g.Fgen(w, "()")
case 1:
g.Fgenf(w, "%s", expr.Signature.Parameters[0].Name)
g.Fgenf(w, " => %v", expr.Body)
default:
g.Fgen(w, "values =>\n")
g.Fgenf(w, "%s{\n", g.Indent)
g.Indented(func() {
for i, p := range expr.Signature.Parameters {
g.Fgenf(w, "%svar %s = values.Item%d;\n", g.Indent, p.Name, i+1)
}
g.Fgenf(w, "%sreturn %v;\n", g.Indent, expr.Body)
})
g.Fgenf(w, "%s}", g.Indent)
}
}
func (g *generator) GenBinaryOpExpression(w io.Writer, expr *model.BinaryOpExpression) {
opstr, precedence := "", g.GetPrecedence(expr)
switch expr.Operation {
case hclsyntax.OpAdd:
opstr = "+"
case hclsyntax.OpDivide:
opstr = "/"
case hclsyntax.OpEqual:
opstr = "=="
case hclsyntax.OpGreaterThan:
opstr = ">"
case hclsyntax.OpGreaterThanOrEqual:
opstr = ">="
case hclsyntax.OpLessThan:
opstr = "<"
case hclsyntax.OpLessThanOrEqual:
opstr = "<="
case hclsyntax.OpLogicalAnd:
opstr = "&&"
case hclsyntax.OpLogicalOr:
opstr = "||"
case hclsyntax.OpModulo:
opstr = "%"
case hclsyntax.OpMultiply:
opstr = "*"
case hclsyntax.OpNotEqual:
opstr = "!="
case hclsyntax.OpSubtract:
opstr = "-"
default:
opstr, precedence = ",", 1
}
g.Fgenf(w, "%.[1]*[2]v %[3]v %.[1]*[4]o", precedence, expr.LeftOperand, opstr, expr.RightOperand)
}
func (g *generator) GenConditionalExpression(w io.Writer, expr *model.ConditionalExpression) {
g.Fgenf(w, "%.4v ? %.4v : %.4v", expr.Condition, expr.TrueResult, expr.FalseResult)
}
func (g *generator) GenForExpression(w io.Writer, expr *model.ForExpression) {
switch expr.Collection.Type().(type) {
case *model.ListType, *model.TupleType:
if expr.KeyVariable == nil {
g.Fgenf(w, "%.20v", expr.Collection)
} else {
g.Fgenf(w, "%.20v.Select((value, i) => new { Key = i.ToString(), Value = pair.Value })",
expr.Collection)
}
case *model.MapType:
if expr.KeyVariable == nil {
g.Fgenf(w, "(%.v).Values", expr.Collection)
} else {
g.Fgenf(w, "%.20v.Select(pair => new { pair.Key, pair.Value })", expr.Collection)
}
}
switch expr.Type().(type) {
case *model.ListType:
// the result of the expression is a list
if expr.Condition != nil {
g.Fgenf(w, ".Where(%s => %.v)", expr.ValueVariable.Name, expr.Condition)
}
g.Fgenf(w, ".Select(%s => \n", expr.ValueVariable.Name)
g.Fgenf(w, "%s{\n", g.Indent)
g.Indented(func() {
g.Fgenf(w, "%sreturn %v;", g.Indent, expr.Value)
})
g.Fgen(w, "\n")
// .ToList() is added so that the expressions returns `List<T>
// which can be implicitly converted to InputList<T>
g.Fgenf(w, "%s}).ToList()", g.Indent)
case *model.MapType:
// the result of the expression is a dictionary
g.Fgen(w, ".ToDictionary(item => {\n")
g.Indented(func() {
if expr.KeyVariable != nil && pcl.VariableAccessed(expr.KeyVariable.Name, expr.Key) {
g.Fgenf(w, "%svar %s = item.Key;\n", g.Indent, expr.KeyVariable.Name)
}
if expr.ValueVariable != nil && pcl.VariableAccessed(expr.ValueVariable.Name, expr.Key) {
g.Fgenf(w, "%svar %s = item.Value;\n", g.Indent, expr.ValueVariable.Name)
}
g.Fgenf(w, "%sreturn %s;\n", g.Indent, expr.Key)
})
g.Fgenf(w, "%s}, item => {\n", g.Indent)
g.Indented(func() {
if expr.KeyVariable != nil && pcl.VariableAccessed(expr.KeyVariable.Name, expr.Value) {
g.Fgenf(w, "%svar %s = item.Key;\n", g.Indent, expr.KeyVariable.Name)
}
if expr.ValueVariable != nil && pcl.VariableAccessed(expr.ValueVariable.Name, expr.Value) {
g.Fgenf(w, "%svar %s = item.Value;\n", g.Indent, expr.ValueVariable.Name)
}
g.Fgenf(w, "%sreturn %v;\n", g.Indent, expr.Value)
})
g.Fgenf(w, "%s})", g.Indent)
}
}
func (g *generator) genApply(w io.Writer, expr *model.FunctionCallExpression) {
// Extract the list of outputs and the continuation expression from the `__apply` arguments.
applyArgs, then := pcl.ParseApplyCall(expr)
if len(applyArgs) == 1 {
// If we only have a single output, just generate a normal `.Apply`
g.Fgenf(w, "%.v.Apply(%.v)", applyArgs[0], then)
} else {
// Otherwise, generate a call to `Output.Tuple().Apply()`.
g.Fgen(w, "Output.Tuple(")
for i, o := range applyArgs {
if i > 0 {
g.Fgen(w, ", ")
}
g.Fgenf(w, "%.v", o)
}
g.Fgenf(w, ").Apply(%.v)", then)
}
}
func (g *generator) genRange(w io.Writer, call *model.FunctionCallExpression, entries bool) {
g.genNYI(w, "Range %.v %.v", call, entries)
}
var functionNamespaces = map[string][]string{
"assetArchive": {"System.Collections.Generic"},
"readDir": {"System.IO", "System.Linq"},
"readFile": {"System.IO"},
"cwd": {"System.IO"},
"filebase64": {"System", "System.IO"},
"filebase64sha256": {"System", "System.IO", "System.Security.Cryptography", "System.Text"},
"toJSON": {"System.Text.Json", "System.Collections.Generic"},
"toBase64": {"System"},
"fromBase64": {"System"},
"sha1": {"System.Security.Cryptography", "System.Text"},
"singleOrNone": {"System.Linq"},
}
func (g *generator) genFunctionUsings(x *model.FunctionCallExpression) []string {
if x.Name != pcl.Invoke {
return functionNamespaces[x.Name]
}
pkg, _ := g.functionName(x.Args[0])
return []string{fmt.Sprintf("%s = Pulumi.%[1]s", pkg)}
}
func (g *generator) genSafeEnum(w io.Writer, to *model.EnumType) func(member *schema.Enum) {
return func(member *schema.Enum) {
// We know the enum value at the call site, so we can directly stamp in a
// valid enum instance. We don't need to convert.
pkg, name := enumName(to)
contract.Assertf(pkg != "", "pkg cannot be empty")
contract.Assertf(name != "", "name cannot be empty")
memberTag := member.Name
if memberTag == "" {
memberTag = member.Value.(string)
}
memberTag, err := makeSafeEnumName(memberTag, name)
contract.AssertNoErrorf(err, "Enum is invalid")
g.Fgenf(w, "%s.%s.%s", pkg, name, memberTag)
}
}
func enumName(enum *model.EnumType) (string, string) {
components := strings.Split(enum.Token, ":")
contract.Assertf(len(components) == 3, "malformed token %v", enum.Token)
modParts := strings.Split(components[1], "/")
// if the token has the format {pkg}:{mod}/{name}:{Name}
// then we simplify into {pkg}:{mod}:{Name}
if len(modParts) == 2 && strings.EqualFold(modParts[1], components[2]) {
components[1] = modParts[0]
}
enumName := tokenToName(enum.Token)
e, ok := pcl.GetSchemaForType(enum)
if !ok {
return "", ""
}
et := e.(*schema.EnumType)
def, err := et.PackageReference.Definition()
contract.AssertNoErrorf(err, "error loading definition for package %q", et.PackageReference.Name())
namespaceMap := def.Language["csharp"].(CSharpPackageInfo).Namespaces
namespace := namespaceName(namespaceMap, components[0])
if components[1] != "" && components[1] != "index" {
namespace += "." + namespaceName(namespaceMap, components[1])
}
return namespace, enumName
}
func (g *generator) genIntrensic(w io.Writer, from model.Expression, to model.Type) {
to = pcl.LowerConversion(from, to)
output, isOutput := to.(*model.OutputType)
if isOutput {
to = output.ElementType
}
switch to := to.(type) {
case *model.EnumType:
pkg, name := enumName(to)
if pkg == "" || name == "" {
// Something has gone wrong. Produce a best effort result.
g.Fgenf(w, "%.v", from)
return
}
var convertFn string
switch {
case to.Type.Equals(model.StringType):
convertFn = fmt.Sprintf("System.Enum.Parse<%s.%s>", pkg, name)
default:
panic(fmt.Sprintf(
"Unsafe enum conversions from type %s not implemented yet: %s => %s",
from.Type(), from, to))
}
if isOutput {
g.Fgenf(w, "%.v.Apply(%s)", from, convertFn)
} else {
diag := pcl.GenEnum(to, from, g.genSafeEnum(w, to), func(from model.Expression) {
g.Fgenf(w, "%s(%v)", convertFn, from)
})
if diag != nil {
g.diagnostics = append(g.diagnostics, diag)
}
}
default:
g.Fgenf(w, "%.v", from) // <- probably wrong w.r.t. precedence
}
}
func (g *generator) genEntries(w io.Writer, expr *model.FunctionCallExpression) {
switch model.ResolveOutputs(expr.Args[0].Type()).(type) {
case *model.ListType, *model.TupleType:
if call, ok := expr.Args[0].(*model.FunctionCallExpression); ok && call.Name == "range" {
g.genRange(w, call, true)
return
}
g.Fgenf(w, "%.20v.Select((v, k) => new { Key = k, Value = v })", expr.Args[0])
case *model.MapType, *model.ObjectType:
g.Fgenf(w, "%.20v.Select(pair => new { pair.Key, pair.Value })", expr.Args[0])
}
}
func (g *generator) withinAwaitBlock(run func()) {
if g.insideAwait {
// already inside await block?
// only run the function
run()
} else {
// not inside await? flag it as true, run the function,
// then set it back to false
g.insideAwait = true
run()
g.insideAwait = false
}
}
func (g *generator) GenFunctionCallExpression(w io.Writer, expr *model.FunctionCallExpression) {
switch expr.Name {
case pcl.IntrinsicConvert:
switch arg := expr.Args[0].(type) {
case *model.ObjectConsExpression:
g.genObjectConsExpression(w, arg, expr.Type())
default:
g.genIntrensic(w, expr.Args[0], expr.Signature.ReturnType)
}
case pcl.IntrinsicApply:
switch expr.Args[0].(type) {
case *model.ScopeTraversalExpression:
traversal := expr.Args[0].(*model.ScopeTraversalExpression)
if len(traversal.Parts) == 1 {
_, isInvoke := g.functionInvokes[traversal.RootName]
if isInvoke {
switch expr.Args[1].(type) {
case *model.AnonymousFunctionExpression:
anonFunction := expr.Args[1].(*model.AnonymousFunctionExpression)
g.Fgenf(w, "%v", anonFunction.Body)
return
}
}
}
}
g.genApply(w, expr)
case intrinsicAwait:
g.withinAwaitBlock(func() {
g.Fgenf(w, "await %.17v", expr.Args[0])
})
case intrinsicOutput:
// if we are calling Output.Create(FuncInvokeAsync())
// then we can simplify to just FuncInvoke() which already returns Output
if funcExpr, isFunc := expr.Args[0].(*model.FunctionCallExpression); isFunc && funcExpr.Name == pcl.Invoke {
_, fullFunctionName := g.functionName(funcExpr.Args[0])
g.Fprintf(w, "%s.Invoke(", fullFunctionName)
functionParts := strings.Split(fullFunctionName, ".")
functionName := functionParts[len(functionParts)-1]
innerFunc, isFunc := funcExpr.Args[1].(*model.FunctionCallExpression)
if isFunc && innerFunc.Name == pcl.IntrinsicConvert {
switch arg := innerFunc.Args[0].(type) {
case *model.ObjectConsExpression:
g.withinFunctionInvoke(func() {
useImplicitTypeName := g.generateOptions.implicitResourceArgsTypeName
inputTypeName := functionName + "InvokeArgs"
destTypeName := strings.ReplaceAll(fullFunctionName, functionName, inputTypeName)
g.genObjectConsExpressionWithTypeName(w, arg, destTypeName, useImplicitTypeName,
pcl.SortedFunctionParameters(funcExpr))
})
default:
g.genIntrensic(w, funcExpr.Args[0], expr.Signature.ReturnType)
}
} else {
if objectExpr, ok := funcExpr.Args[1].(*model.ObjectConsExpression); ok {
g.withinFunctionInvoke(func() {
useImplicitTypeName := g.generateOptions.implicitResourceArgsTypeName
inputTypeName := functionName + "InvokeArgs"
destTypeName := strings.ReplaceAll(fullFunctionName, functionName, inputTypeName)
g.genObjectConsExpressionWithTypeName(w, objectExpr, destTypeName, useImplicitTypeName,
pcl.SortedFunctionParameters(funcExpr))
})
} else {
g.Fgenf(w, "%v", funcExpr.Args[1])
}
}
g.Fprint(w, ")")
} else {
g.Fgenf(w, "Output.Create(%.v)", expr.Args[0])
}
case "element":
g.Fgenf(w, "%.20v[%.v]", expr.Args[0], expr.Args[1])
case "entries":
g.genEntries(w, expr)
case "fileArchive":
g.Fgenf(w, "new FileArchive(%.v)", expr.Args[0])
case "remoteArchive":
g.Fgenf(w, "new RemoteArchive(%.v)", expr.Args[0])
case "assetArchive":
g.Fgen(w, "new AssetArchive(")
g.genDictionary(w, expr.Args[0].(*model.ObjectConsExpression), "AssetOrArchive")
g.Fgen(w, ")")
case "fileAsset":
g.Fgenf(w, "new FileAsset(%.v)", expr.Args[0])
case "stringAsset":
g.Fgenf(w, "new StringAsset(%.v)", expr.Args[0])
case "remoteAsset":
g.Fgenf(w, "new RemoteAsset(%.v)", expr.Args[0])
case "filebase64":
// Assuming the existence of the following helper method located earlier in the preamble
g.Fgenf(w, "ReadFileBase64(%v)", expr.Args[0])
case "filebase64sha256":
// Assuming the existence of the following helper method located earlier in the preamble
g.Fgenf(w, "ComputeFileBase64Sha256(%v)", expr.Args[0])
case "notImplemented":
g.Fgenf(w, "NotImplemented(%v)", expr.Args[0])
case "singleOrNone":
g.Fgenf(w, "Enumerable.Single(%v)", expr.Args[0])
case pcl.Invoke:
_, fullFunctionName := g.functionName(expr.Args[0])
functionParts := strings.Split(fullFunctionName, ".")
functionName := functionParts[len(functionParts)-1]
if g.insideAwait {
g.Fprintf(w, "%s.InvokeAsync(", fullFunctionName)
} else {
g.Fprintf(w, "%s.Invoke(", fullFunctionName)
}
innerFunc, isFunc := expr.Args[1].(*model.FunctionCallExpression)
if isFunc && innerFunc.Name == pcl.IntrinsicConvert {
// function has been "lowered" i.e. rewritten with __convert
switch arg := innerFunc.Args[0].(type) {
case *model.ObjectConsExpression:
g.withinFunctionInvoke(func() {
useImplicitTypeName := g.generateOptions.implicitResourceArgsTypeName
inputTypeName := functionName + "InvokeArgs"
if g.insideAwait {
inputTypeName = functionName + "Args"
}
destTypeName := strings.ReplaceAll(fullFunctionName, functionName, inputTypeName)
g.genObjectConsExpressionWithTypeName(w, arg, destTypeName, useImplicitTypeName,
pcl.SortedFunctionParameters(expr))
})
default:
g.genIntrensic(w, expr.Args[0], expr.Signature.ReturnType)
}
} else {
// function has not been rewritten
switch arg := expr.Args[1].(type) {
case *model.ObjectConsExpression:
useImplicitTypeName := true
destTypeName := "Irrelevant"
g.genObjectConsExpressionWithTypeName(w, arg, destTypeName, useImplicitTypeName,
pcl.SortedFunctionParameters(expr))
default:
g.genIntrensic(w, expr.Args[0], expr.Signature.ReturnType)
}
}
g.Fprint(w, ")")
case "join":
g.Fgenf(w, "string.Join(%v, %v)", expr.Args[0], expr.Args[1])
case "length":
g.Fgenf(w, "%.20v.Length", expr.Args[0])
case "lookup":
g.Fgenf(w, "%v[%v]", expr.Args[0], expr.Args[1])
if len(expr.Args) == 3 {
g.Fgenf(w, " ?? %v", expr.Args[2])
}
case "range":
g.genRange(w, expr, false)
case "readFile":
g.Fgenf(w, "File.ReadAllText(%v)", expr.Args[0])
case "readDir":
g.Fgenf(w, "Directory.GetFiles(%.v).Select(Path.GetFileName)", expr.Args[0])
case "secret":
g.Fgenf(w, "Output.CreateSecret(%v)", expr.Args[0])
case "unsecret":
g.Fgenf(w, "Output.Unsecret(%v)", expr.Args[0])
case "split":
g.Fgenf(w, "%.20v.Split(%v)", expr.Args[1], expr.Args[0])
case "toBase64":
g.Fgenf(w, "Convert.ToBase64String(System.Text.Encoding.UTF8.GetBytes(%v))", expr.Args[0])
case "fromBase64":
g.Fgenf(w, "System.Text.Encoding.UTF8.GetString(Convert.FromBase64String(%v))", expr.Args[0])
case "toJSON":
if model.ContainsOutputs(expr.Args[0].Type()) {
g.Fgen(w, "Output.JsonSerialize(Output.Create(")
g.genDictionaryOrTuple(w, expr.Args[0])
g.Fgen(w, "))")
} else {
g.Fgen(w, "JsonSerializer.Serialize(")
g.genDictionaryOrTuple(w, expr.Args[0])
g.Fgen(w, ")")
}
case "sha1":
// Assuming the existence of the following helper method located earlier in the preamble
g.Fgenf(w, "ComputeSHA1(%v)", expr.Args[0])
case "stack":
g.Fgen(w, "Deployment.Instance.StackName")
case "project":
g.Fgen(w, "Deployment.Instance.ProjectName")
case "cwd":
g.Fgenf(w, "Directory.GetCurrentDirectory()")
default:
g.genNYI(w, "call %v", expr.Name)
}
}
func (g *generator) genDictionaryOrTuple(w io.Writer, expr model.Expression) {
switch expr := expr.(type) {
case *model.ObjectConsExpression:
g.genDictionary(w, expr, "object?")
case *model.TupleConsExpression:
if g.isListOfDifferentTypes(expr) {
g.Fgen(w, "new object?[]\n")
} else {
g.Fgen(w, "new[]\n")
}
g.Fgenf(w, "%[1]s{\n", g.Indent)
g.Indented(func() {
for _, v := range expr.Expressions {
g.Fgenf(w, "%s", g.Indent)
g.genDictionaryOrTuple(w, v)
g.Fgen(w, ",\n")
}
})
g.Fgenf(w, "%s}", g.Indent)
default:
g.Fgenf(w, "%.v", expr)
}
}
func (g *generator) genDictionary(w io.Writer, expr *model.ObjectConsExpression, valueType string) {
g.Fgenf(w, "new Dictionary<string, %s>\n", valueType)
g.Fgenf(w, "%s{\n", g.Indent)
g.Indented(func() {
for _, item := range expr.Items {
g.Fgenf(w, "%s[%.v] = ", g.Indent, item.Key)
g.genDictionaryOrTuple(w, item.Value)
g.Fgen(w, ",\n")
}
})
g.Fgenf(w, "%s}", g.Indent)
}
func (g *generator) isListOfDifferentTypes(expr *model.TupleConsExpression) bool {
var prevType model.Type
for _, v := range expr.Expressions {
if prevType == nil {
prevType = v.Type()
continue
}
_, isObjectType := prevType.(*model.ObjectType)
_, isMap := prevType.(*model.MapType)
if isObjectType || isMap {
// don't actually compare object types or maps because these are always
// mapped to Dictionary<string, object?> in C# so they will be the same type
// even if their contents are different
continue
}
conversionFrom := prevType.ConversionFrom(v.Type())
conversionTo := v.Type().ConversionFrom(prevType)
if conversionTo != model.SafeConversion || conversionFrom != model.SafeConversion {
return true
}
}
return false
}
func (g *generator) GenIndexExpression(w io.Writer, expr *model.IndexExpression) {
g.Fgenf(w, "%.20v[%.v]", expr.Collection, expr.Key)
}
func (g *generator) escapeString(v string, verbatim, expressions bool) string {
builder := strings.Builder{}
for _, c := range v {
if verbatim {
if c == '"' {
builder.WriteRune('"')
}
} else {
if c == '"' || c == '\\' {
builder.WriteRune('\\')
}
}
if expressions && (c == '{' || c == '}') {
builder.WriteRune(c)
}
builder.WriteRune(c)
}
return builder.String()
}
func (g *generator) genStringLiteral(w io.Writer, v string) {
newlines := strings.Contains(v, "\n")
if !newlines {
// This string does not contain newlines so we'll generate a regular string literal. Quotes and backslashes
// will be escaped in conformance with
// https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/lexical-structure
g.Fgen(w, "\"")
g.Fgen(w, g.escapeString(v, false, false))
g.Fgen(w, "\"")
} else {
// This string does contain newlines, so we'll generate a verbatim string literal. Quotes will be escaped
// in conformance with
// https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/lexical-structure
g.Fgen(w, "@\"")
g.Fgen(w, g.escapeString(v, true, false))
g.Fgen(w, "\"")
}
}
func (g *generator) GenLiteralValueExpression(w io.Writer, expr *model.LiteralValueExpression) {
typ := expr.Type()
if cns, ok := typ.(*model.ConstType); ok {
typ = cns.Type
}
switch typ {
case model.BoolType:
g.Fgenf(w, "%v", expr.Value.True())
case model.NoneType:
g.Fgen(w, "null")
case model.NumberType:
bf := expr.Value.AsBigFloat()
if i, acc := bf.Int64(); acc == big.Exact {
g.Fgenf(w, "%d", i)
} else {
f, _ := bf.Float64()
g.Fgenf(w, "%g", f)
}
case model.StringType:
g.genStringLiteral(w, expr.Value.AsString())
default:
contract.Failf("unexpected literal type in GenLiteralValueExpression: %v (%v)", expr.Type(),
expr.SyntaxNode().Range())
}
}
func (g *generator) GenObjectConsExpression(w io.Writer, expr *model.ObjectConsExpression) {
switch argType := expr.Type().(type) {
case *model.ObjectType:
if len(argType.Annotations) > 0 {
if configMetadata, ok := argType.Annotations[0].(*ObjectTypeFromConfigMetadata); ok {
fullTypeName := fmt.Sprintf("Components.%sArgs.%s",
configMetadata.ComponentName,
configMetadata.TypeName)
g.genObjectConsExpressionWithTypeName(w, expr, fullTypeName, false, nil)
return
}
}
}
g.genObjectConsExpression(w, expr, expr.Type())
}
func (g *generator) genObjectConsExpression(w io.Writer, expr *model.ObjectConsExpression, destType model.Type) {
if len(expr.Items) == 0 {
g.Fgenf(w, "null")
return
}
if schemaType, ok := g.toSchemaType(destType); ok {
if codegen.ResolvedType(schemaType) == schema.AnyType {
g.genDictionaryOrTuple(w, expr)
return
}
}
destTypeName := g.argumentTypeName(expr, destType)
g.genObjectConsExpressionWithTypeName(w, expr, destTypeName, false, nil)
}
func propertyNameOverrides(exprType model.Type) map[string]string {
overrides := make(map[string]string)
schemaType, ok := pcl.GetSchemaForType(exprType)
if !ok {
return overrides
}
switch arg := schemaType.(type) {
case *schema.ObjectType:
for _, property := range arg.Properties {
foundOverride := false
if csharp, ok := property.Language["csharp"]; ok {
if options, ok := csharp.(CSharpPropertyInfo); ok {
overrides[property.Name] = options.Name
foundOverride = true
}
}
if !foundOverride {
overrides[property.Name] = property.Name
}
}
}
return overrides
}
func resolvePropertyName(property string, overrides map[string]string) string {
foundOverride, ok := overrides[property]
if ok {
return propertyName(foundOverride)
}
return propertyName(property)
}
func unwrapIntrinsicConvert(expr model.Expression) model.Expression {
if call, ok := expr.(*model.FunctionCallExpression); ok && call.Name == pcl.IntrinsicConvert {
return call.Args[0]
}
return expr
}
func isEmptyList(expr model.Expression) bool {
expr = unwrapIntrinsicConvert(expr)
if list, ok := expr.(*model.TupleConsExpression); ok {
return len(list.Expressions) == 0
}
return false
}
func objectKey(item model.ObjectConsItem) string {
switch key := item.Key.(type) {
case *model.LiteralValueExpression:
return key.Value.AsString()
case *model.TemplateExpression:
// assume a template expression has one constant part that is a LiteralValueExpression
if len(key.Parts) == 1 {
if literal, ok := key.Parts[0].(*model.LiteralValueExpression); ok {
return literal.Value.AsString()
}
}
}
return ""
}
func (g *generator) genObjectConsExpressionWithTypeName(
w io.Writer,
expr *model.ObjectConsExpression,
destTypeName string,
implicitTypeName bool,
multiArguments []*schema.Property,
) {
if len(expr.Items) == 0 {
return
}
if len(multiArguments) > 0 {
pcl.GenerateMultiArguments(g.Formatter, w, "null", expr, multiArguments)
return
}
typeName := destTypeName
if typeName != "" {
if implicitTypeName {
g.Fgenf(w, "new()")
} else {
g.Fgenf(w, "new %s", typeName)
}
propertyNames := propertyNameOverrides(expr.Type())
g.Fgenf(w, "\n%s{\n", g.Indent)
g.Indented(func() {
for _, item := range expr.Items {
g.Fgenf(w, "%s", g.Indent)
propertyKey := objectKey(item)
g.Fprint(w, resolvePropertyName(propertyKey, propertyNames))
if g.usingDefaultListInitializer() && isEmptyList(item.Value) {
g.Fgen(w, " = new() { },\n")
} else {
g.Fgenf(w, " = %.v,\n", item.Value)
}
}
})
g.Fgenf(w, "%s}", g.Indent)
} else {
g.Fgenf(w, "\n%s{\n", g.Indent)
g.Indented(func() {
for _, item := range expr.Items {
g.Fgenf(w, "%s{ %.v, %.v },\n", g.Indent, item.Key, item.Value)
}
})
g.Fgenf(w, "%s}", g.Indent)
}
}
func (g *generator) genRelativeTraversal(w io.Writer,
traversal hcl.Traversal, parts []model.Traversable, objType *schema.ObjectType,
) {
for i, part := range traversal {
var key cty.Value
switch part := part.(type) {
case hcl.TraverseAttr:
key = cty.StringVal(part.Name)
if objType != nil {
if p, ok := objType.Property(part.Name); ok {
if info, ok := p.Language["csharp"].(CSharpPropertyInfo); ok && info.Name != "" {
key = cty.StringVal(info.Name)
}
}
}
case hcl.TraverseIndex:
key = part.Key
default:
contract.Failf("unexpected traversal part of type %T (%v)", part, part.SourceRange())
}
switch key.Type() {
case cty.String:
if model.IsOptionalType(model.GetTraversableType(parts[i])) {
g.Fgen(w, "?")
}
g.Fgenf(w, ".%s", propertyName(key.AsString()))
case cty.Number:
idx, _ := key.AsBigFloat().Int64()
g.Fgenf(w, "[%d]", idx)
default:
contract.Failf("unexpected traversal key of type %T (%v)", key, key.AsString())
}
}
}
func (g *generator) GenRelativeTraversalExpression(w io.Writer, expr *model.RelativeTraversalExpression) {
g.Fgenf(w, "%.20v", expr.Source)
g.genRelativeTraversal(w, expr.Traversal, expr.Parts, nil)
}
func (g *generator) schemaTypeName(schemaType *schema.ObjectType) string {
fullyQualifiedTypeName := schemaType.Token
nameParts := strings.Split(fullyQualifiedTypeName, ":")
return Title(nameParts[len(nameParts)-1])
}
func (g *generator) withinFunctionInvoke(run func()) {
if g.insideFunctionInvoke {
// already inside this block?
// just run the function
run()
} else {
// not inside function invoke?
// set it to true first, run, then set it back to false
g.insideFunctionInvoke = true
run()
g.insideFunctionInvoke = false
}
}
func (g *generator) GenScopeTraversalExpression(w io.Writer, expr *model.ScopeTraversalExpression) {
rootName := makeValidIdentifier(expr.RootName)
if g.isComponent {
configVars := map[string]*pcl.ConfigVariable{}
for _, configVar := range g.program.ConfigVariables() {
configVars[configVar.Name()] = configVar
}
if _, isConfig := configVars[expr.RootName]; isConfig {
if _, configReference := expr.Parts[0].(*pcl.ConfigVariable); configReference {
rootName = "args." + Title(expr.RootName)
}
}
}
if _, ok := expr.Parts[0].(*model.SplatVariable); ok {
rootName = "__item"
}
g.Fgen(w, rootName)
invokedFunctionSchema, isFunctionInvoke := g.functionInvokes[rootName]
if isFunctionInvoke && !g.asyncInit && len(expr.Parts) > 1 {
lambdaArg := "invoke"
if invokedFunctionSchema.ReturnType != nil {
if objectType, ok := invokedFunctionSchema.ReturnType.(*schema.ObjectType); ok && objectType != nil {
lambdaArg = LowerCamelCase(g.schemaTypeName(objectType))
}
}
// Assume invokes are returning Output<T> instead of Task<T>
g.Fgenf(w, ".Apply(%s => %s", lambdaArg, lambdaArg)
}
var objType *schema.ObjectType
if resource, ok := expr.Parts[0].(*pcl.Resource); ok {
if schemaType, ok := pcl.GetSchemaForType(resource.InputType); ok {
objType, _ = schemaType.(*schema.ObjectType)
}
}
g.genRelativeTraversal(w, expr.Traversal.SimpleSplit().Rel, expr.Parts, objType)
if isFunctionInvoke && !g.asyncInit && len(expr.Parts) > 1 {
g.Fgenf(w, ")")
}
}
func (g *generator) GenSplatExpression(w io.Writer, expr *model.SplatExpression) {
g.Fgenf(w, "%.20v.Select(__item => %.v).ToList()", expr.Source, expr.Each)
}
func (g *generator) GenTemplateExpression(w io.Writer, expr *model.TemplateExpression) {
multiLine := false
expressions := false
for _, expr := range expr.Parts {
if lit, ok := expr.(*model.LiteralValueExpression); ok && model.StringType.AssignableFrom(lit.Type()) {
if strings.Contains(lit.Value.AsString(), "\n") {
multiLine = true
}
} else {
expressions = true
}
}
if multiLine {
g.Fgen(w, "@")
}
if expressions {
g.Fgen(w, "$")
}
g.Fgen(w, "\"")
for _, expr := range expr.Parts {
if lit, ok := expr.(*model.LiteralValueExpression); ok && model.StringType.AssignableFrom(lit.Type()) {
g.Fgen(w, g.escapeString(lit.Value.AsString(), multiLine, expressions))
} else {
g.Fgenf(w, "{%.v}", expr)
}
}
g.Fgen(w, "\"")
}
func (g *generator) GenTemplateJoinExpression(w io.Writer, expr *model.TemplateJoinExpression) {
g.genNYI(w, "TemplateJoinExpression")
}
// Removes duplicate strings. Useful when collecting a distinct set of imports
func removeDuplicates(inputs []string) []string {
distinctInputs := make([]string, 0)
seenTexts := make(map[string]bool)
for _, input := range inputs {
if _, seen := seenTexts[input]; !seen {
seenTexts[input] = true
distinctInputs = append(distinctInputs, input)
}
}
return distinctInputs
}
func (g *generator) isListOfDifferentObjectTypes(expr *model.TupleConsExpression) bool {
switch expr.Type().(type) {
case *model.TupleType:
tupleType := expr.Type().(*model.TupleType)
typeNames := make([]string, 0)
for _, elemType := range tupleType.ElementTypes {
if schemaType, ok := pcl.GetSchemaForType(elemType); ok {
if objectType, ok := schemaType.(*schema.ObjectType); ok {
typeName := g.schemaTypeName(objectType)
typeNames = append(typeNames, typeName)
}
}
}
return len(removeDuplicates(typeNames)) > 1
}
return false
}
func (g *generator) GenTupleConsExpression(w io.Writer, expr *model.TupleConsExpression) {
switch len(expr.Expressions) {
case 0:
g.Fgenf(w, "%s {}", g.listInitializer)
default:
if !g.isListOfDifferentObjectTypes(expr) {
// only generate a list initializer when we don't have a list of union types
// because list of a union is mapped to InputList<object>
// which means new[] will not work because type-inference won't
// know the type of the array beforehand
g.Fgenf(w, "%s", g.listInitializer)
}
g.Fgenf(w, "\n%s{", g.Indent)
g.Indented(func() {
for _, v := range expr.Expressions {
g.Fgenf(w, "\n%s%.v,", g.Indent, v)
}
})
g.Fgenf(w, "\n%s}", g.Indent)
}
}
func (g *generator) GenUnaryOpExpression(w io.Writer, expr *model.UnaryOpExpression) {
opstr, precedence := "", g.GetPrecedence(expr)
switch expr.Operation {
case hclsyntax.OpLogicalNot:
opstr = "!"
case hclsyntax.OpNegate:
opstr = "-"
}
g.Fgenf(w, "%[2]v%.[1]*[3]v", precedence, opstr, expr.Operand)
}