pulumi/pkg/importer/hcl2.go

801 lines
23 KiB
Go

// Copyright 2016-2020, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package importer
import (
"errors"
"fmt"
"math"
"strings"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/syntax"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/pkg/v3/resource/deploy/providers"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource"
"github.com/pulumi/pulumi/sdk/v3/go/common/slice"
"github.com/pulumi/pulumi/sdk/v3/go/common/tokens"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
)
// Null represents Pulumi HCL2's `null` variable.
var Null = &model.Variable{
Name: "null",
VariableType: model.NoneType,
}
type PathedLiteralValue struct {
Root string
Value string
ExpressionReference *model.ScopeTraversalExpression
}
type ImportState struct {
Names NameTable
PathedLiteralValues []PathedLiteralValue
}
// filterSelfReferences filters out self-references from the import state so that if a resource has a property
// that happens to have the same value as the ID of that resource, it doesn't create a self-reference.
func filterSelfReferences(resourceName string, importState ImportState) ImportState {
pathedLiteralValues := make([]PathedLiteralValue, 0)
for _, pathedLiteralValue := range importState.PathedLiteralValues {
if pathedLiteralValue.Root != resourceName {
pathedLiteralValues = append(pathedLiteralValues, pathedLiteralValue)
}
}
return ImportState{
Names: importState.Names,
PathedLiteralValues: pathedLiteralValues,
}
}
// GenerateHCL2Definition generates a Pulumi HCL2 definition for a given resource.
func GenerateHCL2Definition(
loader schema.Loader,
state *resource.State,
importState ImportState,
) (*model.Block, error) {
// TODO: pull the package version from the resource's provider
pkg, err := schema.LoadPackageReference(loader, string(state.Type.Package()), nil)
if err != nil {
return nil, err
}
r, ok, err := pkg.Resources().Get(string(state.Type))
if err != nil {
return nil, fmt.Errorf("loading resource '%v': %w", state.Type, err)
}
if !ok {
return nil, fmt.Errorf("unknown resource type '%v'", r)
}
var items []model.BodyItem
name := state.URN.Name()
// Check if _this_ urn is in the name table, if so we need to set logicalName and use the mapped name for
// the resource block.
if mappedName, ok := importState.Names[state.URN]; ok {
items = append(items, &model.Attribute{
Name: "__logicalName",
Value: &model.TemplateExpression{
Parts: []model.Expression{
&model.LiteralValueExpression{
Value: cty.StringVal(name),
},
},
},
})
name = mappedName
}
// keep track of a set of added references to avoid adding the same reference to the dependsOn list
// when the resource is already implicitly referenced via its properties
addedReferences := make(map[string]bool)
onReferenceFound := func(rootName string) {
addedReferences[rootName] = true
}
importStateWithoutSelfRefs := filterSelfReferences(name, importState)
for _, p := range r.InputProperties {
input := state.Inputs[resource.PropertyKey(p.Name)]
x, err := generatePropertyValue(p, input, importStateWithoutSelfRefs, onReferenceFound)
if err != nil {
return nil, err
}
if x != nil {
items = append(items, &model.Attribute{
Name: p.Name,
Value: x,
})
}
}
resourceOptions, err := makeResourceOptions(state, importState.Names, addedReferences)
if err != nil {
return nil, err
}
if resourceOptions != nil {
items = append(items, resourceOptions)
}
typ := string(state.URN.Type())
return &model.Block{
Tokens: syntax.NewBlockTokens("resource", name, typ),
Type: "resource",
Labels: []string{name, typ},
Body: &model.Body{
Items: items,
},
}, nil
}
func newVariableReference(name string) model.Expression {
return model.VariableReference(&model.Variable{
Name: name,
VariableType: model.DynamicType,
})
}
func appendResourceOption(block *model.Block, name string, value model.Expression) *model.Block {
if block == nil {
block = &model.Block{
Tokens: syntax.NewBlockTokens("options"),
Type: "options",
Body: &model.Body{},
}
}
block.Body.Items = append(block.Body.Items, &model.Attribute{
Tokens: syntax.NewAttributeTokens(name),
Name: name,
Value: value,
})
return block
}
func makeResourceOptions(state *resource.State, names NameTable, addedRefs map[string]bool) (*model.Block, error) {
var resourceOptions *model.Block
if state.Parent != "" && state.Parent.QualifiedType() != resource.RootStackType {
name, ok := names[state.Parent]
if !ok {
return nil, fmt.Errorf("no name for parent %v", state.Parent)
}
resourceOptions = appendResourceOption(resourceOptions, "parent", newVariableReference(name))
}
if state.Provider != "" {
ref, err := providers.ParseReference(state.Provider)
if err != nil {
return nil, fmt.Errorf("invalid provider reference %v: %w", state.Provider, err)
}
if !providers.IsDefaultProvider(ref.URN()) {
name, ok := names[ref.URN()]
if !ok {
return nil, fmt.Errorf("no name for provider %v", state.Provider)
}
resourceOptions = appendResourceOption(resourceOptions, "provider", newVariableReference(name))
}
}
if len(state.Dependencies) != 0 {
deps := make([]model.Expression, 0)
for _, d := range state.Dependencies {
name, ok := names[d]
if !ok {
return nil, fmt.Errorf("no name for resource %v", d)
}
// implicitly referenced resource via their properties do not need to be added to the dependsOn list
// for example if you have a property bucket: exampleBucket.id then exampleBucket doesn't need to
// be explicitly added to the dependsOn list
if _, alreadyImplicitlyReferenced := addedRefs[name]; !alreadyImplicitlyReferenced {
deps = append(deps, newVariableReference(name))
}
}
resourceOptions = appendResourceOption(resourceOptions, "dependsOn", &model.TupleConsExpression{
Tokens: syntax.NewTupleConsTokens(len(deps)),
Expressions: deps,
})
}
if state.Protect {
resourceOptions = appendResourceOption(resourceOptions, "protect", &model.LiteralValueExpression{
Tokens: syntax.NewLiteralValueTokens(cty.True),
Value: cty.True,
})
}
return resourceOptions, nil
}
// typeRank orders types by their simplicity.
func typeRank(t schema.Type) int {
switch t {
case schema.BoolType:
return 1
case schema.IntType:
return 2
case schema.NumberType:
return 3
case schema.StringType:
return 4
case schema.AssetType:
return 5
case schema.ArchiveType:
return 6
case schema.JSONType:
return 7
case schema.AnyType:
return 13
default:
switch t := t.(type) {
case *schema.TokenType:
return 8
case *schema.ArrayType:
return 9
case *schema.MapType:
return 10
case *schema.ObjectType:
return 11
case *schema.UnionType:
return 12
case *schema.InputType:
return typeRank(t.ElementType)
case *schema.OptionalType:
return typeRank(t.ElementType)
default:
return int(math.MaxInt32)
}
}
}
// simplerType returns true if T is simpler than U.
//
// The first-order ranking is:
//
// bool < int < number < string < archive < asset < json < token < array < map < object < union < any
//
// Additional rules apply to composite types of the same kind:
// - array(T) is simpler than array(U) if T is simpler than U
// - map(T) is simpler than map(U) if T is simpler than U
// - object({ ... }) is simpler than object({ ... }) if the former has a greater number of required properties that
// are simpler than the latter's required properties
// - union(...) is simpler than union(...) if the former's simplest element type is simpler than the latter's simplest
// element type
func simplerType(t, u schema.Type) bool {
tRank, uRank := typeRank(t), typeRank(u)
if tRank < uRank {
return true
} else if tRank > uRank {
return false
}
t, u = codegen.UnwrapType(t), codegen.UnwrapType(u)
// At this point we know that t and u have the same concrete type.
switch t := t.(type) {
case *schema.TokenType:
u := u.(*schema.TokenType)
if t.UnderlyingType != nil && u.UnderlyingType != nil {
return simplerType(t.UnderlyingType, u.UnderlyingType)
}
return false
case *schema.ArrayType:
return simplerType(t.ElementType, u.(*schema.ArrayType).ElementType)
case *schema.MapType:
return simplerType(t.ElementType, u.(*schema.MapType).ElementType)
case *schema.ObjectType:
// Count how many of T's required properties are simpler than U's required properties and vice versa.
uu := u.(*schema.ObjectType)
tscore, nt, uscore := 0, 0, 0
for _, p := range t.Properties {
if p.IsRequired() {
nt++
for _, q := range uu.Properties {
if q.IsRequired() {
if simplerType(p.Type, q.Type) {
tscore++
}
if simplerType(q.Type, p.Type) {
uscore++
}
}
}
}
}
// If the number of T's required properties that are simpler that U's required properties exceeds the number
// of U's required properties that are simpler than T's required properties, T is simpler.
if tscore > uscore {
return true
}
if tscore < uscore {
return false
}
// If the above counts are equal, T is simpler if it has fewer required properties.
nu := 0
for _, q := range uu.Properties {
if q.IsRequired() {
nu++
}
}
return nt < nu
case *schema.UnionType:
// Pick whichever has the simplest element type.
var simplestElementType schema.Type
for _, u := range u.(*schema.UnionType).ElementTypes {
if simplestElementType == nil || simplerType(u, simplestElementType) {
simplestElementType = u
}
}
for _, t := range t.ElementTypes {
if simplestElementType == nil || simplerType(t, simplestElementType) {
return true
}
}
return false
default:
return false
}
}
// zeroValue constructs a zero value of the given type.
func zeroValue(t schema.Type) model.Expression {
emptyImportState := ImportState{}
onReferenceAdded := func(string) {}
switch t := t.(type) {
case *schema.OptionalType:
return model.VariableReference(Null)
case *schema.InputType:
return zeroValue(t.ElementType)
case *schema.MapType:
return &model.ObjectConsExpression{}
case *schema.ArrayType:
return &model.TupleConsExpression{}
case *schema.UnionType:
// If there is a default type, create a value of that type.
if t.DefaultType != nil {
return zeroValue(t.DefaultType)
}
// Otherwise, pick the simplest type in the list.
var simplestType schema.Type
for _, t := range t.ElementTypes {
if simplestType == nil || simplerType(t, simplestType) {
simplestType = t
}
}
return zeroValue(simplestType)
case *schema.ObjectType:
var items []model.ObjectConsItem
for _, p := range t.Properties {
if p.IsRequired() {
items = append(items, model.ObjectConsItem{
Key: &model.LiteralValueExpression{
Value: cty.StringVal(p.Name),
},
Value: zeroValue(p.Type),
})
}
}
return &model.ObjectConsExpression{Items: items}
case *schema.TokenType:
if t.UnderlyingType != nil {
return zeroValue(t.UnderlyingType)
}
return model.VariableReference(Null)
}
switch t {
case schema.BoolType:
x, err := generateValue(t, resource.NewBoolProperty(false), emptyImportState, onReferenceAdded)
contract.IgnoreError(err)
return x
case schema.IntType, schema.NumberType:
x, err := generateValue(t, resource.NewNumberProperty(0), emptyImportState, onReferenceAdded)
contract.IgnoreError(err)
return x
case schema.StringType:
x, err := generateValue(t, resource.NewStringProperty(""), emptyImportState, onReferenceAdded)
contract.IgnoreError(err)
return x
case schema.ArchiveType, schema.AssetType:
return model.VariableReference(Null)
case schema.JSONType, schema.AnyType:
return &model.ObjectConsExpression{}
default:
contract.Failf("unexpected schema type %v", t)
return nil
}
}
// generatePropertyValue generates the value for the given property. If the value is absent and the property is
// required, a zero value for the property's type is generated. If the value is absent and the property is not
// required, no value is generated (i.e. this function returns nil).
func generatePropertyValue(
property *schema.Property,
value resource.PropertyValue,
importState ImportState,
onReferenceFound func(string),
) (model.Expression, error) {
if !value.HasValue() {
if !property.IsRequired() {
return nil, nil
}
return zeroValue(property.Type), nil
}
return generateValue(property.Type, value, importState, onReferenceFound)
}
// valueStructurallyTypedAs returns true if the given value is structurally typed as the given schema type.
func valueStructurallyTypedAs(value resource.PropertyValue, schemaType schema.Type) bool {
if union, ok := schemaType.(*schema.UnionType); ok {
schemaType = reduceUnionType(union, value)
}
switch {
case value.IsObject():
switch arg := schemaType.(type) {
case *schema.ObjectType:
schemaProperties := make(map[string]schema.Type)
for _, schemaProperty := range arg.Properties {
schemaProperties[schemaProperty.Name] = schemaProperty.Type
}
objectProperties := value.ObjectValue()
// check that each property is present in the schema and that the value is structurally typed as well
for propertyKey, propertyValue := range objectProperties {
propertyValueSchema, ok := arg.Property(string(propertyKey))
if !ok {
// unknown property
return false
}
if !valueStructurallyTypedAs(propertyValue, propertyValueSchema.Type) {
return false
}
}
// check that all required properties from the schema are present in the object properties
for _, schemaProperty := range arg.Properties {
if schemaProperty.IsRequired() {
if _, ok := objectProperties[resource.PropertyKey(schemaProperty.Name)]; !ok {
// the required property was not present in the object
return false
}
}
}
// all properties are present and structurally typed
return true
case *schema.UnionType:
// make sure that at least of the union element types is structurally typed
for _, unionElement := range arg.ElementTypes {
if valueStructurallyTypedAs(value, unionElement) {
return true
}
}
}
case value.IsString():
// basic case
if schemaType == schema.StringType {
return true
}
// for unions: check that at least of one of the element types is also a string
// collapsing unions of unions as necessary recursively
if union, ok := schemaType.(*schema.UnionType); ok {
for _, elementType := range union.ElementTypes {
if valueStructurallyTypedAs(value, elementType) {
return true
}
}
}
case value.IsBool():
// basic case
if schemaType == schema.BoolType {
return true
}
// for unions: check that at least of one of the element types is also a bool
// collapsing unions of unions as necessary recursively
if union, ok := schemaType.(*schema.UnionType); ok {
for _, elementType := range union.ElementTypes {
if valueStructurallyTypedAs(value, elementType) {
return true
}
}
}
case value.IsNumber():
// basic case
if schemaType == schema.NumberType || schemaType == schema.IntType {
return true
}
// for unions: check that at least of one of the element types is also a number
// collapsing unions of unions as necessary recursively
if union, ok := schemaType.(*schema.UnionType); ok {
for _, elementType := range union.ElementTypes {
if valueStructurallyTypedAs(value, elementType) {
return true
}
}
}
case value.IsArray():
// basic case: check that each element in the array is structurally typed as the element type of the schenma array
switch arg := schemaType.(type) {
case *schema.ArrayType:
for _, element := range value.ArrayValue() {
if !valueStructurallyTypedAs(element, arg.ElementType) {
return false
}
}
// all elements are structurally typed
return true
case *schema.UnionType:
// make sure that at least of the union element types is structurally typed
for _, unionElement := range arg.ElementTypes {
if valueStructurallyTypedAs(value, unionElement) {
return true
}
}
}
}
return false
}
// reduceUnionType reduces the given union type to a simpler type that potentially matches the value.
// When the value type is primitive, choose the first element type of the union elements that is of the same type.
// When the value is an object, use the discriminator to choose the element type.
func reduceUnionType(schemaUnion *schema.UnionType, value resource.PropertyValue) schema.Type {
switch {
case value.IsObject():
// return the first element type that matches structurally fits the value
findBestFitType := func() schema.Type {
for _, t := range schemaUnion.ElementTypes {
if valueStructurallyTypedAs(value, t) {
return t
}
}
// if we still couldn't find a type that fits the value
return nil
}
// If the value is an object, use the discriminator to choose the element type.
if schemaUnion.Discriminator == "" {
return findBestFitType()
}
obj := value.ObjectValue()
discriminatorValue, ok := obj[resource.PropertyKey(schemaUnion.Discriminator)]
if !ok {
// discriminator property is not present
// return the first type that fits the value
return findBestFitType()
}
if !discriminatorValue.IsString() {
// discriminator property value is not a string,
// so we can't select a type from the union mapping
return findBestFitType()
}
correspondingTypeToken, ok := schemaUnion.Mapping[discriminatorValue.StringValue()]
if !ok {
// discriminator property value is not a key in the union mapping,
return findBestFitType()
}
for _, elementType := range schemaUnion.ElementTypes {
// found the type token
// match it against the element type which should be an object
elementTypeObject, ok := codegen.UnwrapType(elementType).(*schema.ObjectType)
if ok {
elementTypeToken, parseError := tokens.ParseTypeToken(elementTypeObject.Token)
if parseError != nil {
continue
}
foundTypeToken, parseError := tokens.ParseTypeToken(correspondingTypeToken)
if parseError != nil {
continue
}
typeName := string(elementTypeToken.Name())
foundTypeName := string(foundTypeToken.Name())
if typeName == foundTypeName {
return elementTypeObject
}
}
}
default:
for _, t := range schemaUnion.ElementTypes {
if unionType, ok := t.(*schema.UnionType); ok {
t = reduceUnionType(unionType, value)
}
if valueStructurallyTypedAs(value, t) {
return t
}
}
}
// anything else, we don't know
return nil
}
// generateValue generates a value from the given property value. The given type may or may not match the shape of the
// given value.
func generateValue(
typ schema.Type,
value resource.PropertyValue,
importState ImportState,
onReferenceFound func(string),
) (model.Expression, error) {
typ = codegen.UnwrapType(typ)
if unionType, ok := typ.(*schema.UnionType); ok {
typ = reduceUnionType(unionType, value)
}
switch {
case value.IsArchive():
return nil, errors.New("NYI: archives")
case value.IsArray():
elementType := schema.AnyType
if typ, ok := typ.(*schema.ArrayType); ok {
elementType = typ.ElementType
}
arr := value.ArrayValue()
exprs := make([]model.Expression, len(arr))
for i, v := range arr {
x, err := generateValue(elementType, v, importState, onReferenceFound)
if err != nil {
return nil, err
}
exprs[i] = x
}
return &model.TupleConsExpression{
Tokens: syntax.NewTupleConsTokens(len(exprs)),
Expressions: exprs,
}, nil
case value.IsAsset():
return nil, errors.New("NYI: assets")
case value.IsBool():
return &model.LiteralValueExpression{
Value: cty.BoolVal(value.BoolValue()),
}, nil
case value.IsComputed() || value.IsOutput():
return nil, errors.New("cannot define computed values")
case value.IsNull():
return model.VariableReference(Null), nil
case value.IsNumber():
return &model.LiteralValueExpression{
Value: cty.NumberFloatVal(value.NumberValue()),
}, nil
case value.IsObject():
obj := value.ObjectValue()
items := slice.Prealloc[model.ObjectConsItem](len(obj))
switch arg := typ.(type) {
case *schema.ObjectType:
for _, p := range arg.Properties {
x, err := generatePropertyValue(p, obj[resource.PropertyKey(p.Name)], importState, onReferenceFound)
if err != nil {
return nil, err
}
if x != nil {
items = append(items, model.ObjectConsItem{
Key: &model.LiteralValueExpression{
Value: cty.StringVal(p.Name),
},
Value: x,
})
}
}
default:
elementType := schema.AnyType
if mapType, ok := typ.(*schema.MapType); ok {
elementType = mapType.ElementType
}
for _, k := range obj.StableKeys() {
// Ignore internal properties.
if strings.HasPrefix(string(k), "__") {
continue
}
x, err := generateValue(elementType, obj[k], importState, onReferenceFound)
if err != nil {
return nil, err
}
// Always quote the key in case it includes invalid identifier characters (like '/' or ':')
propKey := fmt.Sprintf("%q", string(k))
items = append(items, model.ObjectConsItem{
Key: &model.LiteralValueExpression{
Value: cty.StringVal(propKey),
},
Value: x,
})
}
}
return &model.ObjectConsExpression{
Tokens: syntax.NewObjectConsTokens(len(items)),
Items: items,
}, nil
case value.IsSecret():
arg, err := generateValue(typ, value.SecretValue().Element, importState, onReferenceFound)
if err != nil {
return nil, err
}
return &model.FunctionCallExpression{
Name: "secret",
Signature: model.StaticFunctionSignature{
Parameters: []model.Parameter{{
Name: "value",
Type: arg.Type(),
}},
ReturnType: model.NewOutputType(arg.Type()),
},
Args: []model.Expression{arg},
}, nil
case value.IsString():
x := &model.TemplateExpression{
Parts: []model.Expression{
&model.LiteralValueExpression{
Value: cty.StringVal(value.StringValue()),
},
},
}
switch typ {
case schema.ArchiveType:
return &model.FunctionCallExpression{
Name: "fileArchive",
Args: []model.Expression{x},
}, nil
case schema.AssetType:
return &model.FunctionCallExpression{
Name: "fileAsset",
Args: []model.Expression{x},
}, nil
default:
for _, pathedValue := range importState.PathedLiteralValues {
if pathedValue.Value == value.StringValue() {
onReferenceFound(pathedValue.Root)
return pathedValue.ExpressionReference, nil
}
}
return x, nil
}
default:
contract.Failf("unexpected property value %v", value)
return nil, nil
}
}