pulumi/sdk/nodejs/runtime/closure/v8.ts

334 lines
14 KiB
TypeScript

// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file provides a low-level interface to a few V8 runtime objects. We will use this low-level
// interface when serializing closures to walk the scope chain and find the value of free variables
// captured by closures, as well as getting source-level debug information so that we can present
// high-quality error messages.
//
// As a side-effect of importing this file, we must enable the --allow-natives-syntax V8 flag. This
// is because we are using V8 intrinsics in order to implement this module.
import * as v8 from "v8";
v8.setFlagsFromString("--allow-natives-syntax");
import * as inspector from "inspector";
import * as util from "util";
import * as vm from "vm";
import * as v8Hooks from "./v8Hooks";
/**
* Given a function, returns the file, line and column number in the file where this function was
* defined. Returns { "", 0, 0 } if the location cannot be found or if the given function has no Script.
* @internal
*/
export async function getFunctionLocationAsync(func: Function) {
// First, find the runtime's internal id for this function.
const functionId = await getRuntimeIdForFunctionAsync(func);
// Now, query for the internal properties the runtime sets up for it.
const { internalProperties } = await runtimeGetPropertiesAsync(functionId, /*ownProperties:*/ false);
// There should normally be an internal property called [[FunctionLocation]]:
// https://chromium.googlesource.com/v8/v8.git/+/3f99afc93c9ba1ba5df19f123b93cc3079893c9b/src/inspector/v8-debugger.cc#793
const functionLocation = internalProperties.find((p) => p.name === "[[FunctionLocation]]");
if (!functionLocation || !functionLocation.value || !functionLocation.value.value) {
return { file: "", line: 0, column: 0 };
}
const value = functionLocation.value.value;
// Map from the scriptId the value has to a file-url.
const file = v8Hooks.getScriptUrl(value.scriptId) || "";
const line = value.lineNumber || 0;
const column = value.columnNumber || 0;
return { file, line, column };
}
/**
* Given a function and a free variable name, lookupCapturedVariableValue looks up the value of that free variable
* in the scope chain of the provided function. If the free variable is not found, `throwOnFailure` indicates
* whether or not this function should throw or return `undefined.
*
* @param func The function whose scope chain is to be analyzed
* @param freeVariable The name of the free variable to inspect
* @param throwOnFailure If true, throws if the free variable can't be found.
* @returns The value of the free variable. If `throwOnFailure` is false, returns `undefined` if not found.
* @internal
*/
export async function lookupCapturedVariableValueAsync(
func: Function,
freeVariable: string,
throwOnFailure: boolean,
): Promise<any> {
// First, find the runtime's internal id for this function.
const functionId = await getRuntimeIdForFunctionAsync(func);
// Now, query for the internal properties the runtime sets up for it.
const { internalProperties } = await runtimeGetPropertiesAsync(functionId, /*ownProperties:*/ false);
// There should normally be an internal property called [[Scopes]]:
// https://chromium.googlesource.com/v8/v8.git/+/3f99afc93c9ba1ba5df19f123b93cc3079893c9b/src/inspector/v8-debugger.cc#820
const scopes = internalProperties.find((p) => p.name === "[[Scopes]]");
if (!scopes) {
throw new Error("Could not find [[Scopes]] property");
}
if (!scopes.value) {
throw new Error("[[Scopes]] property did not have [value]");
}
if (!scopes.value.objectId) {
throw new Error("[[Scopes]].value have objectId");
}
// This is sneaky, but we can actually map back from the [[Scopes]] object to a real in-memory
// v8 array-like value. Note: this isn't actually a real array. For example, it cannot be
// iterated. Nor can any actual methods be called on it. However, we can directly index into
// it, and we can. Similarly, the 'object' type it optionally points at is not a true JS
// object. So we can't call things like .hasOwnProperty on it. However, the values pointed to
// by 'object' are the real in-memory JS objects we are looking for. So we can find and return
// those successfully to our caller.
const scopesArray: { object?: Record<string, any> }[] = await getValueForObjectId(scopes.value.objectId);
// scopesArray is ordered from innermost to outermost.
for (let i = 0, n = scopesArray.length; i < n; i++) {
const scope = scopesArray[i];
if (scope.object) {
if (freeVariable in scope.object) {
const val = scope.object[freeVariable];
return val;
}
}
}
if (throwOnFailure) {
throw new Error("Unexpected missing variable in closure environment: " + freeVariable);
}
return undefined;
}
// We want to call util.promisify on inspector.Session.post. However, due to all the overloads of
// that method, promisify gets confused. To prevent this, we cast our session object down to an
// interface containing only the single overload we care about.
type PostSession<TMethod, TParams, TReturn> = {
post(method: TMethod, params?: TParams, callback?: (err: Error | null, params: TReturn) => void): void;
};
type EvaluationSession = PostSession<
"Runtime.evaluate",
inspector.Runtime.EvaluateParameterType,
inspector.Runtime.EvaluateReturnType
>;
type GetPropertiesSession = PostSession<
"Runtime.getProperties",
inspector.Runtime.GetPropertiesParameterType,
inspector.Runtime.GetPropertiesReturnType
>;
type CallFunctionSession = PostSession<
"Runtime.callFunctionOn",
inspector.Runtime.CallFunctionOnParameterType,
inspector.Runtime.CallFunctionOnReturnType
>;
type ContextSession = {
post(method: "Runtime.disable" | "Runtime.enable", callback?: (err: Error | null) => void): void;
once(
event: "Runtime.executionContextCreated",
listener: (
message: inspector.InspectorNotification<inspector.Runtime.ExecutionContextCreatedEventDataType>,
) => void,
): void;
};
type InflightContext = {
contextId: number;
functions: Record<string, any>;
currentFunctionId: number;
calls: Record<string, any>;
currentCallId: number;
};
// Isolated singleton context accessible from the inspector.
// Used instead of `global` object to support executions with multiple V8 vm contexts as, e.g., done by Jest.
let inflightContextCache: Promise<InflightContext> | undefined;
function inflightContext() {
if (inflightContextCache) {
return inflightContextCache;
}
inflightContextCache = createContext();
return inflightContextCache;
}
async function createContext(): Promise<InflightContext> {
const context: InflightContext = {
contextId: 0,
functions: {},
currentFunctionId: 0,
calls: {},
currentCallId: 0,
};
const session = <ContextSession>await v8Hooks.getSessionAsync();
const post = util.promisify(session.post);
// Create own context with known context id and functionsContext as `global`
await post.call(session, "Runtime.enable");
const contextIdAsync = new Promise<number>((resolve) => {
session.once("Runtime.executionContextCreated", (event) => {
resolve(event.params.context.id);
});
});
vm.createContext(context);
context.contextId = await contextIdAsync;
await post.call(session, "Runtime.disable");
return context;
}
async function getRuntimeIdForFunctionAsync(func: Function): Promise<inspector.Runtime.RemoteObjectId> {
// In order to get information about an object, we need to put it in a well known location so
// that we can call Runtime.evaluate and find it. To do this, we use a special map on the
// 'global' object of a vm context only used for this purpose, and map from a unique-id to that
// object. We then call Runtime.evaluate with an expression that then points to that unique-id
// in that global object. The runtime will then find the object and give us back an internal id
// for it. We can then query for information about the object through that internal id.
//
// Note: the reason for the mapping object and the unique-id we create is so that we don't run
// into any issues when being called asynchronously. We don't want to place the object in a
// location that might be overwritten by another call while we're asynchronously waiting for our
// original call to complete.
const session = <EvaluationSession>await v8Hooks.getSessionAsync();
const post = util.promisify(session.post);
// Place the function in a unique location
const context = await inflightContext();
const currentFunctionName = "id" + context.currentFunctionId++;
context.functions[currentFunctionName] = func;
const contextId = context.contextId;
const expression = `functions.${currentFunctionName}`;
try {
const retType = await post.call(session, "Runtime.evaluate", { contextId, expression });
if (retType.exceptionDetails) {
throw new Error(
`Error calling "Runtime.evaluate(${expression})" on context ${contextId}: ` +
retType.exceptionDetails.text,
);
}
const remoteObject = retType.result;
if (remoteObject.type !== "function") {
throw new Error("Remote object was not 'function': " + JSON.stringify(remoteObject));
}
if (!remoteObject.objectId) {
throw new Error("Remote function does not have 'objectId': " + JSON.stringify(remoteObject));
}
return remoteObject.objectId;
} finally {
delete context.functions[currentFunctionName];
}
}
async function runtimeGetPropertiesAsync(
objectId: inspector.Runtime.RemoteObjectId,
ownProperties: boolean | undefined,
) {
const session = <GetPropertiesSession>await v8Hooks.getSessionAsync();
const post = util.promisify(session.post);
// This cast will become unnecessary when we move to TS 3.1.6 or above. In that version they
// support typesafe '.call' calls.
const retType = <inspector.Runtime.GetPropertiesReturnType>(
await post.call(session, "Runtime.getProperties", { objectId, ownProperties })
);
if (retType.exceptionDetails) {
throw new Error(
`Error calling "Runtime.getProperties(${objectId}, ${ownProperties})": ` + retType.exceptionDetails.text,
);
}
return { internalProperties: retType.internalProperties || [], properties: retType.result };
}
async function getValueForObjectId(objectId: inspector.Runtime.RemoteObjectId): Promise<any> {
// In order to get the raw JS value for the *remote wrapper* of the [[Scopes]] array, we use
// Runtime.callFunctionOn on it passing in a fresh function-declaration. The Node runtime will
// then compile that function, invoking it with the 'real' underlying scopes-array value in
// memory as the bound 'this' value. Inside that function declaration, we can then access
// 'this' and assign it to a unique-id in a well known mapping table we have set up. As above,
// the unique-id is to prevent any issues with multiple in-flight asynchronous calls.
const session = <CallFunctionSession>await v8Hooks.getSessionAsync();
const post = util.promisify(session.post);
const context = await inflightContext();
// Get an id for an unused location in the global table.
const tableId = "id" + context.currentCallId++;
// Now, ask the runtime to call a fictitious method on the scopes-array object. When it
// does, it will get the actual underlying value for the scopes array and bind it to the
// 'this' value inside the function. Inside the function we then just grab 'this' and
// stash it in our global table. After this completes, we'll then have access to it.
// This cast will become unnecessary when we move to TS 3.1.6 or above. In that version they
// support typesafe '.call' calls.
const retType = <inspector.Runtime.CallFunctionOnReturnType>await post.call(session, "Runtime.callFunctionOn", {
objectId,
functionDeclaration: `function () {
calls["${tableId}"] = this;
}`,
});
if (retType.exceptionDetails) {
throw new Error(`Error calling "Runtime.callFunction(${objectId})": ` + retType.exceptionDetails.text);
}
if (!context.calls.hasOwnProperty(tableId)) {
throw new Error(`Value was not stored into table after calling "Runtime.callFunctionOn(${objectId})"`);
}
// Extract value and clear our table entry.
const val = context.calls[tableId];
delete context.calls[tableId];
return val;
}
export async function getBoundFunction(
func: Function,
): Promise<{ targetFunctionText: string; boundThisValue: any; boundArgsValues: any[] }> {
const functionId = await getRuntimeIdForFunctionAsync(func);
const { internalProperties } = await runtimeGetPropertiesAsync(functionId, /*ownProperties:*/ false);
const desc = internalProperties.find((p) => p.name === "[[TargetFunction]]");
const targetFunctionText = desc?.value?.description;
if (!targetFunctionText) {
throw new Error("function is not a bound function");
}
const boundThisValue = internalProperties.find((p) => p.name === "[[BoundThis]]")?.value?.value;
const boundArgsObjectId = internalProperties.find((p) => p.name === "[[BoundArgs]]")?.value?.objectId;
let boundArgsValues: any[] = [];
if (boundArgsObjectId) {
const { properties } = await runtimeGetPropertiesAsync(boundArgsObjectId, /*ownProperties:*/ false);
boundArgsValues = properties.filter((p) => p.enumerable).map((p) => p.value?.value);
}
return { targetFunctionText, boundThisValue, boundArgsValues };
}