pulumi/pkg/codegen/hcl2/model/binder_expression.go

783 lines
28 KiB
Go

// Copyright 2016-2020, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"reflect"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/codegen/hcl2/syntax"
"github.com/pulumi/pulumi/pkg/util/contract"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
type expressionBinder struct {
anonSymbols map[*hclsyntax.AnonSymbolExpr]Definition
scope *Scope
}
// BindExpression binds an HCL2 expression using the given scope and token map.
func BindExpression(syntax hclsyntax.Node, scope *Scope, tokens syntax.TokenMap) (Expression, hcl.Diagnostics) {
b := &expressionBinder{
anonSymbols: map[*hclsyntax.AnonSymbolExpr]Definition{},
scope: scope,
}
return b.bindExpression(syntax)
}
// BindExpressionText parses and binds an HCL2 expression using the given scope.
func BindExpressionText(source string, scope *Scope) (Expression, hcl.Diagnostics) {
syntax, tokens, diagnostics := syntax.ParseExpression(source, "<anonymous>", hcl.InitialPos)
if diagnostics.HasErrors() {
return nil, diagnostics
}
return BindExpression(syntax, scope, tokens)
}
// bindExpression binds a single HCL2 expression.
func (b *expressionBinder) bindExpression(syntax hclsyntax.Node) (Expression, hcl.Diagnostics) {
switch syntax := syntax.(type) {
case *hclsyntax.AnonSymbolExpr:
return b.bindAnonSymbolExpression(syntax)
case *hclsyntax.BinaryOpExpr:
return b.bindBinaryOpExpression(syntax)
case *hclsyntax.ConditionalExpr:
return b.bindConditionalExpression(syntax)
case *hclsyntax.ForExpr:
return b.bindForExpression(syntax)
case *hclsyntax.FunctionCallExpr:
return b.bindFunctionCallExpression(syntax)
case *hclsyntax.IndexExpr:
return b.bindIndexExpression(syntax)
case *hclsyntax.LiteralValueExpr:
return b.bindLiteralValueExpression(syntax)
case *hclsyntax.ObjectConsExpr:
return b.bindObjectConsExpression(syntax)
case *hclsyntax.ObjectConsKeyExpr:
return b.bindObjectConsKeyExpr(syntax)
case *hclsyntax.RelativeTraversalExpr:
return b.bindRelativeTraversalExpression(syntax)
case *hclsyntax.ScopeTraversalExpr:
return b.bindScopeTraversalExpression(syntax)
case *hclsyntax.SplatExpr:
return b.bindSplatExpression(syntax)
case *hclsyntax.TemplateExpr:
return b.bindTemplateExpression(syntax)
case *hclsyntax.TemplateJoinExpr:
return b.bindTemplateJoinExpression(syntax)
case *hclsyntax.TemplateWrapExpr:
return b.bindTemplateWrapExpression(syntax)
case *hclsyntax.TupleConsExpr:
return b.bindTupleConsExpression(syntax)
case *hclsyntax.UnaryOpExpr:
return b.bindUnaryOpExpression(syntax)
default:
contract.Failf("unexpected expression node of type %T (%v)", syntax, syntax.Range())
return nil, nil
}
}
// ctyTypeToType converts a cty.Type to a model Type.
func ctyTypeToType(t cty.Type, optional bool) Type {
// TODO(pdg): non-primitive types. We simply don't need these yet.
var result Type
switch {
case t.Equals(cty.NilType):
return NoneType
case t.Equals(cty.Bool):
result = BoolType
case t.Equals(cty.Number):
result = NumberType
case t.Equals(cty.String):
result = StringType
case t.Equals(cty.DynamicPseudoType):
result = DynamicType
case t.IsMapType():
result = NewMapType(ctyTypeToType(t.ElementType(), false))
case t.IsListType():
result = NewListType(ctyTypeToType(t.ElementType(), false))
case t.IsSetType():
result = NewSetType(ctyTypeToType(t.ElementType(), false))
case t.IsObjectType():
properties := map[string]Type{}
for key, t := range t.AttributeTypes() {
properties[key] = ctyTypeToType(t, false)
}
result = NewObjectType(properties)
case t.IsTupleType():
elements := make([]Type, len(t.TupleElementTypes()))
for i, t := range t.TupleElementTypes() {
elements[i] = ctyTypeToType(t, false)
}
result = NewTupleType(elements...)
default:
contract.Failf("NYI: cty type %v", t.FriendlyName())
return NoneType
}
if optional {
return NewOptionalType(result)
}
return result
}
var typeCapsule = cty.Capsule("type", reflect.TypeOf((*Type)(nil)).Elem())
// encapsulateType wraps the given type in a cty capsule for use in TraverseIndex values.
func encapsulateType(t Type) cty.Value {
return cty.CapsuleVal(typeCapsule, &t)
}
// getOperationSignature returns the equivalent StaticFunctionSignature for a given Operation. This signature can be
// used for typechecking the operation's arguments.
func getOperationSignature(op *hclsyntax.Operation) StaticFunctionSignature {
ctyParams := op.Impl.Params()
sig := StaticFunctionSignature{
Parameters: make([]Parameter, len(ctyParams)),
}
for i, p := range ctyParams {
sig.Parameters[i] = Parameter{
Name: p.Name,
Type: InputType(ctyTypeToType(p.Type, p.AllowNull)),
}
}
if p := op.Impl.VarParam(); p != nil {
sig.VarargsParameter = &Parameter{
Name: p.Name,
Type: InputType(ctyTypeToType(p.Type, p.AllowNull)),
}
}
sig.ReturnType = ctyTypeToType(op.Type, false)
return sig
}
// typecheckArgs typechecks the arguments against a given function signature.
func typecheckArgs(srcRange hcl.Range, signature StaticFunctionSignature, args ...Expression) hcl.Diagnostics {
var diagnostics hcl.Diagnostics
// First typecheck the arguments for positional parameters. It is an error if there are fewer arguments than parameters
// unless all missing arguments are for parameters with optional types.
remainingArgs := args
for _, param := range signature.Parameters {
if len(remainingArgs) == 0 {
if !IsOptionalType(param.Type) {
diagnostics = append(diagnostics, missingRequiredArgument(param, srcRange))
}
} else {
if !param.Type.ConversionFrom(remainingArgs[0].Type()).Exists() {
diagnostics = append(diagnostics, ExprNotConvertible(param.Type, remainingArgs[0]))
}
remainingArgs = remainingArgs[1:]
}
}
// Typecheck any remaining arguments against the varargs parameter. It is an error if there is no varargs parameter.
if len(remainingArgs) > 0 {
varargs := signature.VarargsParameter
if varargs == nil {
diagnostics = append(diagnostics, extraArguments(len(signature.Parameters), len(args), srcRange))
} else {
for _, arg := range remainingArgs {
if !varargs.Type.ConversionFrom(arg.Type()).Exists() {
diagnostics = append(diagnostics, ExprNotConvertible(varargs.Type, arg))
}
}
}
}
return diagnostics
}
// bindAnonSymbolExpression binds an anonymous symbol expression. These expressions should only occur in the context of
// splat expressions, and are used represent the receiver of the expression following the splat. It is an error for
// an anonymous symbol expression to occur outside this context.
func (b *expressionBinder) bindAnonSymbolExpression(syntax *hclsyntax.AnonSymbolExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
lv, ok := b.anonSymbols[syntax]
if !ok {
diagnostics = append(diagnostics, internalError(syntax.Range(), "undefined anonymous symbol"))
return &ErrorExpression{Syntax: syntax, exprType: DynamicType}, diagnostics
}
return &ScopeTraversalExpression{
Syntax: &hclsyntax.ScopeTraversalExpr{
Traversal: hcl.Traversal{hcl.TraverseRoot{Name: "<anonymous>", SrcRange: syntax.SrcRange}},
SrcRange: syntax.SrcRange,
},
Parts: []Traversable{lv},
}, diagnostics
}
// bindBinaryOpExpression binds a binary operator expression. If the operands to the binary operator contain eventuals,
// the result of the binary operator is eventual.
func (b *expressionBinder) bindBinaryOpExpression(syntax *hclsyntax.BinaryOpExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
// Bind the operands.
leftOperand, leftDiags := b.bindExpression(syntax.LHS)
diagnostics = append(diagnostics, leftDiags...)
rightOperand, rightDiags := b.bindExpression(syntax.RHS)
diagnostics = append(diagnostics, rightDiags...)
// Compute the signature for the operator and typecheck the arguments.
signature := getOperationSignature(syntax.Op)
contract.Assert(len(signature.Parameters) == 2)
typecheckDiags := typecheckArgs(syntax.Range(), signature, leftOperand, rightOperand)
diagnostics = append(diagnostics, typecheckDiags...)
return &BinaryOpExpression{
Syntax: syntax,
LeftOperand: leftOperand,
RightOperand: rightOperand,
exprType: liftOperationType(signature.ReturnType, leftOperand, rightOperand),
}, diagnostics
}
// bindConditionalExpression binds a conditional expression. The condition expression must be of type bool. The type of
// the expression is unify(true result, false result). If the type of the condition is eventual, the type of the
// expression is eventual.
func (b *expressionBinder) bindConditionalExpression(syntax *hclsyntax.ConditionalExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
// Bind the operands.
condition, conditionDiags := b.bindExpression(syntax.Condition)
diagnostics = append(diagnostics, conditionDiags...)
trueResult, trueDiags := b.bindExpression(syntax.TrueResult)
diagnostics = append(diagnostics, trueDiags...)
falseResult, falseDiags := b.bindExpression(syntax.FalseResult)
diagnostics = append(diagnostics, falseDiags...)
// Compute the type of the result.
resultType, _ := UnifyTypes(trueResult.Type(), falseResult.Type())
// Typecheck the condition expression.
signature := StaticFunctionSignature{Parameters: []Parameter{{Name: "condition", Type: InputType(BoolType)}}}
typecheckDiags := typecheckArgs(syntax.Range(), signature, condition)
diagnostics = append(diagnostics, typecheckDiags...)
return &ConditionalExpression{
Syntax: syntax,
Condition: condition,
TrueResult: trueResult,
FalseResult: falseResult,
exprType: liftOperationType(resultType, condition),
}, diagnostics
}
// unwrapIterableSourceType removes any eventual types that wrap a type intended for iteration.
func unwrapIterableSourceType(t Type) Type {
// TODO(pdg): unions
for {
switch tt := t.(type) {
case *OutputType:
t = tt.ElementType
case *PromiseType:
t = tt.ElementType
default:
return t
}
}
}
// wrapIterableSourceType adds optional or eventual types to a type intended for iteration per the structure of the
// source type.
func wrapIterableResultType(sourceType, iterableType Type) Type {
// TODO(pdg): unions
for {
switch t := sourceType.(type) {
case *OutputType:
sourceType, iterableType = t.ElementType, NewOutputType(iterableType)
case *PromiseType:
sourceType, iterableType = t.ElementType, NewPromiseType(iterableType)
default:
return iterableType
}
}
}
// bindForExpression binds a for expression. The value being iterated must be an list, map, or object. The type of
// the result is an list unless a key expression is present, in which case it is a map. Key types must be strings.
// The element type of the result is the type of the value expression. If the type of the value being iterated is
// optional or eventual, the type of the result is optional or eventual. If the type of the key expression or
// condition expression is eventual, the result is also eventual.
func (b *expressionBinder) bindForExpression(syntax *hclsyntax.ForExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
collection, collectionDiags := b.bindExpression(syntax.CollExpr)
diagnostics = append(diagnostics, collectionDiags...)
// Poke through any eventual and optional types that may wrap the collection type.
collectionType := unwrapIterableSourceType(collection.Type())
// TODO(pdg): handle union types.
var keyType, valueType Type
switch collectionType := collectionType.(type) {
case *ListType:
keyType, valueType = NumberType, collectionType.ElementType
case *MapType:
keyType, valueType = StringType, collectionType.ElementType
case *TupleType:
keyType = NumberType
valueType, _ = UnifyTypes(collectionType.ElementTypes...)
case *ObjectType:
keyType = StringType
types := make([]Type, 0, len(collectionType.Properties))
for _, t := range collectionType.Properties {
types = append(types, t)
}
valueType, _ = UnifyTypes(types...)
default:
// If the collection is a dynamic type, treat it as an iterable(dynamic, dynamic). Otherwise, issue an error.
if collectionType != DynamicType {
diagnostics = append(diagnostics, unsupportedCollectionType(collectionType, syntax.CollExpr.Range()))
}
keyType, valueType = DynamicType, DynamicType
}
// Push a scope for the key and value variables and define these vars.
b.scope = b.scope.Push(syntax)
defer func() { b.scope = b.scope.Pop() }()
if syntax.KeyVar != "" {
ok := b.scope.Define(syntax.KeyVar, &Variable{Name: syntax.KeyVar, VariableType: keyType})
contract.Assert(ok)
}
if ok := b.scope.Define(syntax.ValVar, &Variable{Name: syntax.ValVar, VariableType: valueType}); !ok {
diagnostics = append(diagnostics, nameAlreadyDefined(syntax.ValVar, syntax.Range()))
}
var key Expression
if syntax.KeyExpr != nil {
keyExpr, keyDiags := b.bindExpression(syntax.KeyExpr)
key, diagnostics = keyExpr, append(diagnostics, keyDiags...)
// A key expression is only present when producing a map. Key types must therefore be strings.
if !InputType(StringType).ConversionFrom(key.Type()).Exists() {
diagnostics = append(diagnostics, ExprNotConvertible(InputType(StringType), key))
}
}
value, valueDiags := b.bindExpression(syntax.ValExpr)
diagnostics = append(diagnostics, valueDiags...)
var condition Expression
if syntax.CondExpr != nil {
condExpr, conditionDiags := b.bindExpression(syntax.CondExpr)
condition, diagnostics = condExpr, append(diagnostics, conditionDiags...)
if !InputType(BoolType).ConversionFrom(condition.Type()).Exists() {
diagnostics = append(diagnostics, ExprNotConvertible(InputType(BoolType), condition))
}
}
// If there is a key expression, we are producing a map. Otherwise, we are producing an list. In either case, wrap
// the result type in the same set of eventuals and optionals present in the collection type.
var resultType Type
if key != nil {
valueType := value.Type()
if syntax.Group {
valueType = NewListType(valueType)
}
resultType = wrapIterableResultType(collection.Type(), NewMapType(valueType))
} else {
resultType = wrapIterableResultType(collection.Type(), NewListType(value.Type()))
}
// If either the key expression or the condition expression is eventual, the result is eventual: each of these
// values is required to determine which items are present in the result.
var liftArgs []Expression
if key != nil {
liftArgs = append(liftArgs, key)
}
if condition != nil {
liftArgs = append(liftArgs, condition)
}
return &ForExpression{
Syntax: syntax,
Collection: collection,
Key: key,
Value: value,
exprType: liftOperationType(resultType, liftArgs...),
}, diagnostics
}
// bindFunctionCallExpression binds a function call expression. The name of the function is bound using the current
// scope chain. An argument to a function must be assignable to the type of the corresponding parameter. It is not an
// error to omit arguments for trailing positional parameters if those parameters are optional. If any of the
// parameters to the function are eventual, the result type of the function is also eventual.
func (b *expressionBinder) bindFunctionCallExpression(
syntax *hclsyntax.FunctionCallExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
// Bind the function's arguments.
args := make([]Expression, len(syntax.Args))
for i, syntax := range syntax.Args {
arg, argDiagnostics := b.bindExpression(syntax)
args[i], diagnostics = arg, append(diagnostics, argDiagnostics...)
}
// Attempt to bind the name of the function to its definition.
function, hasFunction := b.scope.BindFunctionReference(syntax.Name)
if !hasFunction {
diagnostics = append(diagnostics, unknownFunction(syntax.Name, syntax.NameRange))
return &FunctionCallExpression{
Syntax: syntax,
Name: syntax.Name,
Signature: StaticFunctionSignature{
VarargsParameter: &Parameter{Name: "args", Type: DynamicType},
ReturnType: DynamicType,
},
Args: args,
}, diagnostics
}
// Compute the function's signature.
signature, sigDiags := function.GetSignature(args)
diagnostics = append(diagnostics, sigDiags...)
// Wrap the function's parameter types in input types s.t. they accept eventual arguments.
for i := range signature.Parameters {
signature.Parameters[i].Type = InputType(signature.Parameters[i].Type)
}
if signature.VarargsParameter != nil {
signature.VarargsParameter.Type = InputType(signature.VarargsParameter.Type)
}
// Typecheck the function's arguments.
typecheckDiags := typecheckArgs(syntax.Range(), signature, args...)
diagnostics = append(diagnostics, typecheckDiags...)
signature.ReturnType = liftOperationType(signature.ReturnType, args...)
return &FunctionCallExpression{
Syntax: syntax,
Name: syntax.Name,
Signature: signature,
Args: args,
}, diagnostics
}
// bindIndexExpression binds an index expression. The value being indexed must be an list, map, or object.
//
// - If the value is an list, the result type is the type of the list's elements, and the index must be assignable to
// number (TODO(pdg): require integer indices?)
// - If the value is a map, the result type is the type of the map's values, and the index must be assignable to
// string
// - If the value is an object, the result type is any, and the index must be assignable to a string
//
// If either the value being indexed or the index is eventual, result is eventual.
func (b *expressionBinder) bindIndexExpression(syntax *hclsyntax.IndexExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
collection, collectionDiags := b.bindExpression(syntax.Collection)
diagnostics = append(diagnostics, collectionDiags...)
key, keyDiags := b.bindExpression(syntax.Key)
diagnostics = append(diagnostics, keyDiags...)
part, partDiags := collection.Type().Traverse(hcl.TraverseIndex{
Key: encapsulateType(key.Type()),
SrcRange: syntax.Key.Range(),
})
diagnostics = append(diagnostics, partDiags...)
return &IndexExpression{
Syntax: syntax,
Collection: collection,
Key: key,
exprType: liftOperationType(part.(Type), collection, key),
}, diagnostics
}
// bindLiteralValueExpression binds a literal value expression. The value must be a boolean, integer, number, or
// string.
func (b *expressionBinder) bindLiteralValueExpression(
syntax *hclsyntax.LiteralValueExpr) (Expression, hcl.Diagnostics) {
v, typ, diagnostics := syntax.Val, NoneType, hcl.Diagnostics(nil)
if !v.IsNull() {
typ = ctyTypeToType(v.Type(), false)
}
switch {
case typ == NoneType || typ == StringType || typ == IntType || typ == NumberType || typ == BoolType:
// OK
default:
typ, diagnostics = DynamicType, hcl.Diagnostics{unsupportedLiteralValue(syntax)}
}
return &LiteralValueExpression{
Syntax: syntax,
Value: v,
exprType: typ,
}, diagnostics
}
// bindObjectConsExpression binds an object construction expression. The expression's keys must be strings. If any of
// the keys are not literal values, the result type is map(U), where U is the unified type of the property types.
// Otherwise, the result type is an object type that maps each key to the type of its value. If any of the keys is
// eventual, the result is eventual.
func (b *expressionBinder) bindObjectConsExpression(syntax *hclsyntax.ObjectConsExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
keys := make([]Expression, len(syntax.Items))
items := make([]ObjectConsItem, len(syntax.Items))
for i, item := range syntax.Items {
keyExpr, keyDiags := b.bindExpression(item.KeyExpr)
diagnostics = append(diagnostics, keyDiags...)
keys[i] = keyExpr
if !InputType(StringType).ConversionFrom(keyExpr.Type()).Exists() {
diagnostics = append(diagnostics, objectKeysMustBeStrings(keyExpr))
}
valExpr, valDiags := b.bindExpression(item.ValueExpr)
diagnostics = append(diagnostics, valDiags...)
items[i] = ObjectConsItem{Key: keyExpr, Value: valExpr}
}
// Attempt to build an object type out of the result. If there are any attribute names that come from variables,
// type the result as map(unify(propertyTypes)).
properties, isMapType, types := map[string]Type{}, false, []Type{}
for _, item := range items {
types = append(types, item.Value.Type())
keyLit, ok := item.Key.(*LiteralValueExpression)
if ok {
key, err := convert.Convert(keyLit.Value, cty.String)
if err == nil {
properties[key.AsString()] = item.Value.Type()
continue
}
}
isMapType = true
}
var typ Type
if isMapType {
elementType, _ := UnifyTypes(types...)
typ = NewMapType(elementType)
} else {
typ = NewObjectType(properties)
}
return &ObjectConsExpression{
Syntax: syntax,
Items: items,
exprType: liftOperationType(typ, keys...),
}, diagnostics
}
// bindObjectConsKeyExpr binds an object construction key.
func (b *expressionBinder) bindObjectConsKeyExpr(syntax *hclsyntax.ObjectConsKeyExpr) (Expression, hcl.Diagnostics) {
if !syntax.ForceNonLiteral {
if name := hcl.ExprAsKeyword(syntax); name != "" {
return b.bindExpression(&hclsyntax.LiteralValueExpr{
Val: cty.StringVal(name),
SrcRange: syntax.Range(),
})
}
}
return b.bindExpression(syntax.Wrapped)
}
// bindRelativeTraversalExpression binds a relative traversal expression. Each step of the traversal must be a legal
// step with respect to its receiver. The root receiver is the type of the source expression.
func (b *expressionBinder) bindRelativeTraversalExpression(
syntax *hclsyntax.RelativeTraversalExpr) (Expression, hcl.Diagnostics) {
source, diagnostics := b.bindExpression(syntax.Source)
parts, partDiags := b.bindTraversalParts(source.Type(), syntax.Traversal)
diagnostics = append(diagnostics, partDiags...)
return &RelativeTraversalExpression{
Syntax: syntax,
Source: source,
Parts: parts,
}, diagnostics
}
// bindScopeTraversalExpression binds a scope traversal expression. Each step of the traversal must be a legal
// step with respect to its receiver. The root receiver is the definition in the current scope referred to by the root
// name.
func (b *expressionBinder) bindScopeTraversalExpression(
syntax *hclsyntax.ScopeTraversalExpr) (Expression, hcl.Diagnostics) {
def, ok := b.scope.BindReference(syntax.Traversal.RootName())
if !ok {
parts := make([]Traversable, len(syntax.Traversal))
for i := range parts {
parts[i] = DynamicType
}
return &ScopeTraversalExpression{
Syntax: syntax,
Parts: parts,
}, hcl.Diagnostics{undefinedVariable(syntax.Traversal.SimpleSplit().Abs.SourceRange())}
}
parts, diagnostics := b.bindTraversalParts(def, syntax.Traversal.SimpleSplit().Rel)
return &ScopeTraversalExpression{
Syntax: syntax,
Parts: parts,
}, diagnostics
}
// bindSplatExpression binds a splat expression. If the type being splatted is an list or any, the type of the
// iteration variable is the element type of the list or any, respectively. Otherwise, the type of the iteration
// variable is the type being splatted: in this case, the splat expression implicitly constructs a single-element
// tuple. The type of the result is an list whose elements have the type of the each expression. If the value being
// splatted is eventual or optional, the result type is eventual or optional.
func (b *expressionBinder) bindSplatExpression(syntax *hclsyntax.SplatExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
source, sourceDiags := b.bindExpression(syntax.Source)
diagnostics = append(diagnostics, sourceDiags...)
sourceType := unwrapIterableSourceType(source.Type())
elementType := sourceType
if arr, isList := sourceType.(*ListType); isList {
elementType = arr.ElementType
} else if sourceType != DynamicType {
source = &TupleConsExpression{
Syntax: &hclsyntax.TupleConsExpr{
Exprs: []hclsyntax.Expression{syntax.Source},
SrcRange: syntax.Source.Range(),
OpenRange: syntax.Source.StartRange(),
},
Expressions: []Expression{source},
exprType: NewListType(source.Type()),
}
}
item := &Variable{
Name: "<anonymous>",
VariableType: elementType,
}
b.anonSymbols[syntax.Item] = item
each, eachDiags := b.bindExpression(syntax.Each)
diagnostics = append(diagnostics, eachDiags...)
return &SplatExpression{
Syntax: syntax,
Source: source,
Each: each,
Item: item,
exprType: wrapIterableResultType(source.Type(), NewListType(each.Type())),
}, diagnostics
}
// bindTemplateExpression binds a template expression. The result is always a string. If any of the parts of the
// expression are eventual, the result is eventual.
func (b *expressionBinder) bindTemplateExpression(syntax *hclsyntax.TemplateExpr) (Expression, hcl.Diagnostics) {
if syntax.IsStringLiteral() {
return b.bindExpression(syntax.Parts[0])
}
var diagnostics hcl.Diagnostics
parts := make([]Expression, len(syntax.Parts))
for i, syntax := range syntax.Parts {
part, partDiags := b.bindExpression(syntax)
parts[i], diagnostics = part, append(diagnostics, partDiags...)
}
return &TemplateExpression{
Syntax: syntax,
Parts: parts,
exprType: liftOperationType(StringType, parts...),
}, diagnostics
}
// bindTemplateJoinExpression binds a template join expression. If any of the parts of the expression are eventual,
// the result is eventual.
func (b *expressionBinder) bindTemplateJoinExpression(
syntax *hclsyntax.TemplateJoinExpr) (Expression, hcl.Diagnostics) {
tuple, diagnostics := b.bindExpression(syntax.Tuple)
return &TemplateJoinExpression{
Syntax: syntax,
Tuple: tuple,
exprType: liftOperationType(StringType, tuple),
}, diagnostics
}
// bindTemplateWrapExpression binds a template wrap expression.
func (b *expressionBinder) bindTemplateWrapExpression(
syntax *hclsyntax.TemplateWrapExpr) (Expression, hcl.Diagnostics) {
return b.bindExpression(syntax.Wrapped)
}
// bindTupleConsExpression binds a tuple construction expression. The result is a tuple(T_0, ..., T_N).
func (b *expressionBinder) bindTupleConsExpression(syntax *hclsyntax.TupleConsExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
exprs := make([]Expression, len(syntax.Exprs))
for i, syntax := range syntax.Exprs {
expr, exprDiags := b.bindExpression(syntax)
exprs[i], diagnostics = expr, append(diagnostics, exprDiags...)
}
elementTypes := make([]Type, len(exprs))
for i, expr := range exprs {
elementTypes[i] = expr.Type()
}
return &TupleConsExpression{
Syntax: syntax,
Expressions: exprs,
exprType: NewTupleType(elementTypes...),
}, diagnostics
}
// bindUnaryOpExpression binds a unary operator expression. If the operand to the unary operator contains eventuals,
// the result of the unary operator is eventual.
func (b *expressionBinder) bindUnaryOpExpression(syntax *hclsyntax.UnaryOpExpr) (Expression, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
// Bind the operand.
operand, operandDiags := b.bindExpression(syntax.Val)
diagnostics = append(diagnostics, operandDiags...)
// Compute the signature for the operator and typecheck the arguments.
signature := getOperationSignature(syntax.Op)
contract.Assert(len(signature.Parameters) == 1)
typecheckDiags := typecheckArgs(syntax.Range(), signature, operand)
diagnostics = append(diagnostics, typecheckDiags...)
return &UnaryOpExpression{
Syntax: syntax,
Operand: operand,
exprType: liftOperationType(signature.ReturnType, operand),
}, diagnostics
}