pulumi/pkg/backend/display/object_diff.go

1361 lines
41 KiB
Go

// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package display
import (
"bytes"
"encoding/json"
"errors"
"fmt"
"io"
"math"
"reflect"
"sort"
"strconv"
"strings"
"github.com/sergi/go-diff/diffmatchpatch"
"gopkg.in/yaml.v3"
codeasset "github.com/pulumi/pulumi/pkg/v3/asset"
"github.com/pulumi/pulumi/pkg/v3/display"
"github.com/pulumi/pulumi/pkg/v3/engine"
"github.com/pulumi/pulumi/pkg/v3/resource/deploy"
"github.com/pulumi/pulumi/pkg/v3/resource/deploy/providers"
"github.com/pulumi/pulumi/sdk/v3/go/common/diag/colors"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource/archive"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource/asset"
"github.com/pulumi/pulumi/sdk/v3/go/common/slice"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
)
// getIndent computes a step's parent indentation.
func getIndent(step engine.StepEventMetadata, seen map[resource.URN]engine.StepEventMetadata) int {
indent := 0
for p := step.Res.Parent; p != ""; {
par, has := seen[p]
if !has {
// This can happen during deletes, since we delete children before parents.
// TODO[pulumi/pulumi#340]: we need to figure out how best to display this sequence; at the very
// least, it would be ideal to preserve the indentation.
break
}
indent++
p = par.Res.Parent
}
return indent
}
func printStepHeader(b io.StringWriter, step engine.StepEventMetadata) {
var extra string
old := step.Old
new := step.New
if new != nil && !new.Protect && old != nil && old.Protect {
// show an unlocked symbol, since we are unprotecting a resource.
extra = " 🔓"
} else if (new != nil && new.Protect) || (old != nil && old.Protect) {
// show a locked symbol, since we are either newly protecting this resource, or retaining protection.
extra = " 🔒"
}
writeString(b, fmt.Sprintf("%s: (%s)%s\n", string(step.Type), step.Op, extra))
}
func getIndentationString(indent int, op display.StepOp, prefix bool) string {
result := strings.Repeat(" ", indent)
if !prefix {
return result
}
if result == "" {
contract.Assertf(!prefix, "Expected indention for a prefixed line")
return result
}
rp := deploy.RawPrefix(op)
contract.Assertf(len(rp) == 2, "expected raw prefix to be 2 characters long: %q", rp)
contract.Assertf(len(result) >= 2, "expected indention to be at least 2 characters long: %q", result)
return result[:len(result)-2] + rp
}
func writeString(b io.StringWriter, s string) {
_, err := b.WriteString(s)
contract.IgnoreError(err)
}
func writeIndentedf(b io.StringWriter, indent int, op display.StepOp, prefix bool, format string, a ...interface{}) {
writeString(b, deploy.Color(op))
writeString(b, getIndentationString(indent, op, prefix))
writeString(b, fmt.Sprintf(format, a...))
writeString(b, colors.Reset)
}
func writeUnprefixedIndentedf(b io.StringWriter, indent int, op display.StepOp, format string, a ...interface{}) {
writeIndentedf(b, indent, op, false, format, a...)
}
func writef(b io.StringWriter, op display.StepOp, format string, a ...interface{}) {
writeUnprefixedIndentedf(b, 0, op, format, a...)
}
func writeVerbatim(b io.StringWriter, op display.StepOp, value string) {
writeUnprefixedIndentedf(b, 0, op, "%s", value)
}
func getResourcePropertiesSummary(step engine.StepEventMetadata, indent int) string {
var b bytes.Buffer
op := step.Op
urn := step.URN
old := step.Old
// Print the indentation.
writeString(&b, getIndentationString(indent, op, false))
// First, print out the operation's prefix.
writeString(&b, deploy.Prefix(op, true /*done*/))
// Next, print the resource type (since it is easy on the eyes and can be quickly identified).
printStepHeader(&b, step)
// For these simple properties, print them as 'same' if they're just an update or replace.
simplePropOp := considerSameIfNotCreateOrDelete(op)
// Print out the URN and, if present, the ID, as "pseudo-properties" and indent them.
var id resource.ID
if old != nil {
id = old.ID
}
// Always print the ID, URN, and provider.
if id != "" {
writeUnprefixedIndentedf(&b, indent+1, simplePropOp, "[id=%s]\n", string(id))
}
if urn != "" {
writeUnprefixedIndentedf(&b, indent+1, simplePropOp, "[urn=%s]\n", urn)
}
if step.Provider != "" {
new := step.New
if old != nil && new != nil && old.Provider != new.Provider {
newProv, err := providers.ParseReference(new.Provider)
contract.Assertf(err == nil, "invalid provider reference %q: %v", new.Provider, err)
writeUnprefixedIndentedf(&b, indent+1, deploy.OpUpdate, "[provider: ")
writef(&b, deploy.OpDelete, "%s", old.Provider)
writeVerbatim(&b, deploy.OpUpdate, " => ")
if newProv.ID() == providers.UnknownID {
writef(&b, deploy.OpCreate, "%s", string(newProv.URN())+"::output<string>")
} else {
writef(&b, deploy.OpCreate, "%s", new.Provider)
}
writeVerbatim(&b, deploy.OpUpdate, "]\n")
} else {
prov, err := providers.ParseReference(step.Provider)
contract.Assertf(err == nil, "invalid provider reference %q: %v", step.Provider, err)
// Elide references to default providers.
if prov.URN().Name() != "default" {
writeUnprefixedIndentedf(&b, indent+1, simplePropOp, "[provider=%s]\n", step.Provider)
}
}
}
return b.String()
}
func getResourcePropertiesDetails(
step engine.StepEventMetadata, indent int, planning bool, summary bool, truncateOutput bool, debug bool,
) string {
var b bytes.Buffer
// indent everything an additional level, like other properties.
indent++
old, new := step.Old, step.New
if old == nil && new != nil {
if len(new.Outputs) > 0 {
PrintObject(&b, new.Outputs, planning, indent, step.Op, false, truncateOutput, debug)
} else {
PrintObject(&b, new.Inputs, planning, indent, step.Op, false, truncateOutput, debug)
}
} else if new == nil && old != nil {
// in summary view, we don't have to print out the entire object that is getting deleted.
// note, the caller will have already printed out the type/name/id/urn of the resource,
// and that's sufficient for a summarized deletion view.
if !summary {
PrintObject(&b, old.Inputs, planning, indent, step.Op, false, truncateOutput, debug)
}
} else if len(new.Outputs) > 0 && step.Op != deploy.OpImport && step.Op != deploy.OpImportReplacement {
printOldNewDiffs(&b, old.Outputs, new.Outputs, nil, planning, indent, step.Op, summary, truncateOutput, debug)
} else {
printOldNewDiffs(&b, old.Inputs, new.Inputs, step.Diffs, planning, indent, step.Op, summary, truncateOutput, debug)
}
return b.String()
}
func maxKey(keys []resource.PropertyKey) int {
maxkey := 0
for _, k := range keys {
if len(k) > maxkey {
maxkey = len(k)
}
}
return maxkey
}
func PrintObject(
b *bytes.Buffer, props resource.PropertyMap, planning bool,
indent int, op display.StepOp, prefix bool, truncateOutput bool, debug bool,
) {
p := propertyPrinter{
dest: b,
planning: planning,
indent: indent,
op: op,
prefix: prefix,
debug: debug,
truncateOutput: truncateOutput,
}
p.printObject(props)
}
func (p *propertyPrinter) printObject(props resource.PropertyMap) {
// Compute the maximum width of property keys so we can justify everything.
keys := props.StableKeys()
maxkey := maxKey(keys)
// Now print out the values intelligently based on the type.
for _, k := range keys {
if v := props[k]; !resource.IsInternalPropertyKey(k) {
p.printObjectProperty(k, v, maxkey)
}
}
}
func (p *propertyPrinter) printObjectProperty(key resource.PropertyKey, value resource.PropertyValue, maxkey int) {
p.printPropertyTitle(string(key), maxkey)
p.printPropertyValue(value)
}
func PrintResourceReference(
b *bytes.Buffer, resRef resource.ResourceReference, planning bool,
indent int, op display.StepOp, prefix bool, debug bool,
) {
p := propertyPrinter{
dest: b,
planning: planning,
indent: indent,
op: op,
prefix: prefix,
debug: debug,
}
p.printResourceReference(resRef)
}
func (p *propertyPrinter) printResourceReference(resRef resource.ResourceReference) {
p.printPropertyTitle("URN", 3)
p.writef("%q\n", resRef.URN)
p.printPropertyTitle("ID", 3)
p.printPropertyValue(resRef.ID)
p.printPropertyTitle("PackageVersion", 3)
p.writef("%q\n", resRef.PackageVersion)
}
func massageStackPreviewAdd(p resource.PropertyValue) resource.PropertyValue {
switch {
case p.IsArray():
arr := make([]resource.PropertyValue, len(p.ArrayValue()))
for i, v := range p.ArrayValue() {
arr[i] = massageStackPreviewAdd(v)
}
return resource.NewArrayProperty(arr)
case p.IsObject():
obj := resource.PropertyMap{}
for k, v := range p.ObjectValue() {
if k != "@isPulumiResource" {
obj[k] = massageStackPreviewAdd(v)
}
}
return resource.NewObjectProperty(obj)
default:
return p
}
}
func massageStackPreviewDiff(diff resource.ValueDiff, inResource bool) {
switch {
case diff.Array != nil:
for i, p := range diff.Array.Adds {
diff.Array.Adds[i] = massageStackPreviewAdd(p)
}
for _, d := range diff.Array.Updates {
massageStackPreviewDiff(d, inResource)
}
case diff.Object != nil:
massageStackPreviewOutputDiff(diff.Object, inResource)
}
}
// massageStackPreviewOutputDiff removes any adds of unknown values nested inside Pulumi resources present in a stack's
// outputs.
func massageStackPreviewOutputDiff(diff *resource.ObjectDiff, inResource bool) {
if diff == nil {
return
}
_, isResource := diff.Adds["@isPulumiResource"]
if isResource {
delete(diff.Adds, "@isPulumiResource")
for k, v := range diff.Adds {
if v.IsComputed() {
delete(diff.Adds, k)
}
}
}
for i, p := range diff.Adds {
diff.Adds[i] = massageStackPreviewAdd(p)
}
for k, d := range diff.Updates {
if isResource && d.New.IsComputed() && !shouldPrintPropertyValue(d.Old, false) {
delete(diff.Updates, k)
} else {
massageStackPreviewDiff(d, inResource)
if !d.Object.AnyChanges() {
delete(diff.Updates, k)
}
}
}
}
// getResourceOutputsPropertiesString prints only those properties that either differ from the input properties or, if
// there is an old snapshot of the resource, differ from the prior old snapshot's output properties.
func getResourceOutputsPropertiesString(
step engine.StepEventMetadata, indent int, planning, debug, refresh, showSames bool,
) string {
// During the actual update we always show all the outputs for the stack, even if they are unchanged.
if !showSames && !planning && step.URN.QualifiedType() == resource.RootStackType {
showSames = true
}
// We should only print outputs for normal resources if the outputs are known to be complete.
// This will be the case if we are:
//
// 1) not doing a preview
// 2) doing a refresh
// 3) doing a read
// 4) doing an import
//
// Technically, 2-4 are the same, since they're all bottoming out at a provider's implementation
// of Read, but the upshot is that either way we're ending up with outputs that are exactly
// accurate. If we are not sure that we are in one of the above states, we shouldn't try to
// print outputs.
//
// Note: we always show the outputs for the stack itself. These are valuable enough to want
// to always see.
if planning {
printOutputDuringPlanning := refresh ||
step.Op == deploy.OpRead ||
step.Op == deploy.OpReadReplacement ||
step.Op == deploy.OpImport ||
step.Op == deploy.OpImportReplacement ||
step.URN.QualifiedType() == resource.RootStackType
if !printOutputDuringPlanning {
return ""
}
}
// Resources that have initialization errors did not successfully complete, and therefore do not
// have outputs to render diffs for. So, simply return.
if step.Old != nil && len(step.Old.InitErrors) > 0 {
return ""
}
// Only certain kinds of steps have output properties associated with them.
var ins resource.PropertyMap
var outs resource.PropertyMap
if step.New == nil || step.New.Outputs == nil {
ins = make(resource.PropertyMap)
outs = make(resource.PropertyMap)
} else {
ins = step.New.Inputs
outs = step.New.Outputs
}
op := step.Op
// If there was an old state associated with this step, we may have old outputs. If we do, and if they differ from
// the new outputs, we want to print the diffs.
var outputDiff *resource.ObjectDiff
if step.Old != nil && step.Old.Outputs != nil {
outputDiff = step.Old.Outputs.Diff(outs, resource.IsInternalPropertyKey)
// If this is the root stack type, we want to strip out any nested resource outputs that are not known if
// they have no corresponding output in the old state.
if planning && step.URN.QualifiedType() == resource.RootStackType {
massageStackPreviewOutputDiff(outputDiff, false)
}
// If we asked not to show-sames, and no outputs changed then don't show anything at all here.
if outputDiff == nil && !showSames {
return ""
}
}
var keys []resource.PropertyKey
if outputDiff == nil {
keys = outs.StableKeys()
} else {
keys = outputDiff.Keys()
}
maxkey := maxKey(keys)
b := &bytes.Buffer{}
p := propertyPrinter{
dest: b,
planning: planning,
indent: indent,
op: op,
debug: debug,
}
// Now sort the keys and enumerate each output property in a deterministic order.
for _, k := range keys {
out := outs[k]
// Print this property if it is printable and if any of the following are true:
// - a property with the same key is not present in the inputs
// - the property that is present in the inputs is different
// - we are doing a refresh, in which case we always want to show state differences
if outputDiff != nil || (!resource.IsInternalPropertyKey(k) && shouldPrintPropertyValue(out, true)) {
if in, has := ins[k]; has && !refresh {
if out.Diff(in, resource.IsInternalPropertyKey) == nil {
continue
}
}
// If we asked to not show-sames, and this is a same output, then filter it out of what
// we display.
if !showSames && outputDiff != nil && outputDiff.Same(k) {
continue
}
if outputDiff != nil {
p.printObjectPropertyDiff(k, maxkey, *outputDiff)
} else {
p.printObjectProperty(k, out, maxkey)
}
}
}
return b.String()
}
func considerSameIfNotCreateOrDelete(op display.StepOp) display.StepOp {
switch op {
case deploy.OpCreate, deploy.OpDelete, deploy.OpDeleteReplaced, deploy.OpReadDiscard, deploy.OpDiscardReplaced:
return op
default:
return deploy.OpSame
}
}
func shouldPrintPropertyValue(v resource.PropertyValue, outs bool) bool {
if v.IsNull() {
return false // don't print nulls (they just clutter up the output).
}
if v.IsString() && v.StringValue() == "" {
return false // don't print empty strings either.
}
if v.IsArray() && len(v.ArrayValue()) == 0 {
return false // skip empty arrays, since they are often uninteresting default values.
}
if v.IsObject() && len(v.ObjectValue()) == 0 {
return false // skip objects with no properties, since they are also uninteresting.
}
if v.IsOutput() && !outs {
// also don't show output properties until the outs parameter tells us to.
return false
}
return true
}
type propertyPrinter struct {
dest io.StringWriter
op display.StepOp
planning bool
prefix bool
debug bool
summary bool
truncateOutput bool
indent int
}
func (p *propertyPrinter) indented(amt int) *propertyPrinter {
new := *p
new.indent += amt
return &new
}
func (p *propertyPrinter) withOp(op display.StepOp) *propertyPrinter {
new := *p
new.op = op
return &new
}
func (p *propertyPrinter) withPrefix(value bool) *propertyPrinter {
new := *p
new.prefix = value
return &new
}
func (p *propertyPrinter) writeString(s string) {
writeString(p.dest, s)
}
func (p *propertyPrinter) writeIndentedf(format string, a ...interface{}) {
if p.truncateOutput {
for i, item := range a {
if item, ok := item.(string); ok {
a[i] = p.truncatePropertyString(item)
}
}
}
writeIndentedf(p.dest, p.indent, p.op, p.prefix, format, a...)
}
func (p *propertyPrinter) writeUnprefixedIndentedf(format string, a ...interface{}) {
writeUnprefixedIndentedf(p.dest, p.indent, p.op, format, a...)
}
func (p *propertyPrinter) writef(format string, a ...interface{}) {
writef(p.dest, p.op, format, a...)
}
func (p *propertyPrinter) writeVerbatim(value string) {
writeVerbatim(p.dest, p.op, value)
}
func (p *propertyPrinter) printPropertyTitle(name string, align int) {
p.writeIndentedf("%-"+strconv.Itoa(align)+"s: ", name)
}
func propertyTitlePrinter(name string, align int) func(*propertyPrinter) {
return func(p *propertyPrinter) {
p.printPropertyTitle(name, align)
}
}
func (p *propertyPrinter) printPropertyValue(v resource.PropertyValue) {
switch {
case isPrimitive(v):
p.printPrimitivePropertyValue(v)
case v.IsArray():
arr := v.ArrayValue()
if len(arr) == 0 {
p.writeVerbatim("[]")
} else {
p.writeVerbatim("[\n")
for i, elem := range arr {
p.writeIndentedf(" [%d]: ", i)
p.indented(1).printPropertyValue(elem)
}
p.writeUnprefixedIndentedf("]")
}
case v.IsAsset():
a := v.AssetValue()
if a.IsText() {
p.writef("asset(text:%s) {\n", shortHash(a.Hash))
a = codeasset.MassageIfUserProgramCodeAsset(a, p.debug)
massaged := a.Text
// pretty print the text, line by line, with proper breaks.
lines := strings.Split(massaged, "\n")
for _, line := range lines {
p.writeUnprefixedIndentedf(" %s\n", line)
}
p.writeUnprefixedIndentedf("}")
} else if path, has := a.GetPath(); has {
p.writef("asset(file:%s) { %s }", shortHash(a.Hash), path)
} else if uri, has := a.GetURI(); has {
p.writef("asset(uri:%s) { %s }", shortHash(a.Hash), uri)
} else {
p.writef("asset(unknown:%s) { }", shortHash(a.Hash))
}
case v.IsArchive():
a := v.ArchiveValue()
if assets, has := a.GetAssets(); has {
p.writef("archive(assets:%s) {\n", shortHash(a.Hash))
var names []string
for name := range assets {
names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
p.printAssetOrArchive(assets[name], name)
}
p.writeUnprefixedIndentedf("}")
} else if path, has := a.GetPath(); has {
p.writef("archive(file:%s) { %s }", shortHash(a.Hash), path)
} else if uri, has := a.GetURI(); has {
p.writef("archive(uri:%s) { %v }", shortHash(a.Hash), uri)
} else {
p.writef("archive(%s) { }", shortHash(a.Hash))
}
case v.IsObject():
obj := v.ObjectValue()
if len(obj) == 0 {
p.writeVerbatim("{}")
} else {
p.writeVerbatim("{\n")
p.indented(1).printObject(obj)
p.writeUnprefixedIndentedf("}")
}
case v.IsResourceReference():
resRef := v.ResourceReferenceValue()
p.writeVerbatim("{\n")
p.indented(1).printResourceReference(resRef)
p.writeUnprefixedIndentedf("}")
default:
contract.Failf("Unknown PropertyValue type %v", v)
}
p.writeVerbatim("\n")
}
func (p *propertyPrinter) printAssetOrArchive(v interface{}, name string) {
p.writeIndentedf(" \"%v\": ", name)
p.indented(1).printPropertyValue(assetOrArchiveToPropertyValue(v))
}
func assetOrArchiveToPropertyValue(v interface{}) resource.PropertyValue {
switch t := v.(type) {
case *asset.Asset:
return resource.NewAssetProperty(t)
case *archive.Archive:
return resource.NewArchiveProperty(t)
default:
contract.Failf("Unexpected archive element '%v'", reflect.TypeOf(t))
return resource.PropertyValue{V: nil}
}
}
func shortHash(hash string) string {
if len(hash) > 7 {
return hash[:7]
}
return hash
}
func printOldNewDiffs(
b *bytes.Buffer, olds resource.PropertyMap, news resource.PropertyMap, include []resource.PropertyKey,
planning bool, indent int, op display.StepOp, summary bool, truncateOutput bool, debug bool,
) {
// Get the full diff structure between the two, and print it (recursively).
if diff := olds.Diff(news, resource.IsInternalPropertyKey); diff != nil {
PrintObjectDiff(b, *diff, include, planning, indent, summary, truncateOutput, debug)
} else {
// If there's no diff, report the op as Same - there's no diff to render
// so it should be rendered as if nothing changed.
PrintObject(b, news, planning, indent, deploy.OpSame, true, truncateOutput, debug)
}
}
func PrintObjectDiff(b *bytes.Buffer, diff resource.ObjectDiff, include []resource.PropertyKey,
planning bool, indent int, summary bool, truncateOutput bool, debug bool,
) {
p := propertyPrinter{
dest: b,
planning: planning,
indent: indent,
prefix: true,
debug: debug,
summary: summary,
truncateOutput: truncateOutput,
}
p.printObjectDiff(diff, include)
}
func (p *propertyPrinter) printObjectDiff(diff resource.ObjectDiff, include []resource.PropertyKey) {
contract.Assertf(p.indent > 0, "indentation must be > 0 to print object diffs")
// Compute the maximum width of property keys so we can justify everything. If an include set was given, filter out
// any properties that are not in the set.
keys := diff.Keys()
if include != nil {
includeSet := make(map[resource.PropertyKey]bool)
for _, k := range include {
includeSet[k] = true
}
var filteredKeys []resource.PropertyKey
for _, k := range keys {
if includeSet[k] {
filteredKeys = append(filteredKeys, k)
}
}
keys = filteredKeys
}
maxkey := maxKey(keys)
// To print an object diff, enumerate the keys in stable order, and print each property independently.
for _, k := range keys {
p.printObjectPropertyDiff(k, maxkey, diff)
}
}
func (p *propertyPrinter) printObjectPropertyDiff(key resource.PropertyKey, maxkey int, diff resource.ObjectDiff) {
titleFunc := propertyTitlePrinter(string(key), maxkey)
if add, isadd := diff.Adds[key]; isadd {
p.printAdd(add, titleFunc)
} else if del, isdelete := diff.Deletes[key]; isdelete {
p.printDelete(del, titleFunc)
} else if update, isupdate := diff.Updates[key]; isupdate {
p.printPropertyValueDiff(titleFunc, update)
} else if same := diff.Sames[key]; !p.summary && shouldPrintPropertyValue(same, p.planning) {
p.withOp(deploy.OpSame).withPrefix(false).printObjectProperty(key, same, maxkey)
}
}
func (p *propertyPrinter) printPropertyValueDiff(titleFunc func(*propertyPrinter), diff resource.ValueDiff) {
p = p.withOp(deploy.OpUpdate).withPrefix(true)
contract.Assertf(p.indent > 0, "indentation must be > 0 to print property value diffs")
if diff.Array != nil {
titleFunc(p)
p.writeVerbatim("[\n")
a := diff.Array
for i := 0; i < a.Len(); i++ {
elemPrinter := p.indented(2)
elemTitleFunc := func(p *propertyPrinter) {
p.indented(-1).writeIndentedf("[%d]: ", i)
}
if add, isadd := a.Adds[i]; isadd {
elemPrinter.printAdd(add, elemTitleFunc)
} else if del, isdelete := a.Deletes[i]; isdelete {
elemPrinter.printDelete(del, elemTitleFunc)
} else if update, isupdate := a.Updates[i]; isupdate {
elemPrinter.printPropertyValueDiff(elemTitleFunc, update)
} else if same, issame := a.Sames[i]; issame && !p.summary {
elemPrinter = elemPrinter.withOp(deploy.OpSame).withPrefix(false)
elemTitleFunc(elemPrinter)
elemPrinter.printPropertyValue(same)
}
}
p.writeUnprefixedIndentedf("]\n")
} else if diff.Object != nil {
titleFunc(p)
p.writeVerbatim("{\n")
p.indented(1).printObjectDiff(*diff.Object, nil)
p.writeUnprefixedIndentedf("}\n")
} else {
shouldPrintOld := shouldPrintPropertyValue(diff.Old, false)
shouldPrintNew := shouldPrintPropertyValue(diff.New, false)
if shouldPrintOld && shouldPrintNew {
if diff.Old.IsArchive() &&
diff.New.IsArchive() {
p.printArchiveDiff(titleFunc, diff.Old.ArchiveValue(), diff.New.ArchiveValue())
return
}
if isPrimitive(diff.Old) && isPrimitive(diff.New) {
titleFunc(p)
if diff.Old.IsString() && diff.New.IsString() {
p.printTextDiff(diff.Old.StringValue(), diff.New.StringValue())
return
}
p.withOp(deploy.OpDelete).printPrimitivePropertyValue(diff.Old)
p.writeVerbatim(" => ")
p.withOp(deploy.OpCreate).printPrimitivePropertyValue(diff.New)
p.writeVerbatim("\n")
return
}
}
// If we ended up here, the two values either differ by type, or they have different primitive values. We will
// simply emit a deletion line followed by an addition line.
if shouldPrintOld {
p.printDelete(diff.Old, titleFunc)
}
if shouldPrintNew {
p.printAdd(diff.New, titleFunc)
}
}
}
func isPrimitive(value resource.PropertyValue) bool {
return value.IsNull() || value.IsString() || value.IsNumber() ||
value.IsBool() || value.IsComputed() || value.IsOutput() || value.IsSecret()
}
func (p *propertyPrinter) printPrimitivePropertyValue(v resource.PropertyValue) {
contract.Requiref(isPrimitive(v), "v", "must be primitive")
if v.IsNull() {
p.writeVerbatim("<null>")
} else if v.IsBool() {
p.writef("%t", v.BoolValue())
} else if v.IsNumber() {
// All pulumi numbers are IEEE doubles really (even in languages where we codegen integers the wire
// protocol only supports doubles). But by default Go will print them in scientific notation for large
// enough values which is suboptimal for our purposes when the value is still an integer. (i.e.
// non-fractional). See https://github.com/pulumi/pulumi/issues/13016 for context.
number := v.NumberValue()
if math.Trunc(number) == number {
p.writef("%.f", number)
} else {
// For factional values we're fine with Go printing them in scientific notation for large
// exponents.
p.writef("%g", number)
}
} else if v.IsString() {
if vv, kind, ok := p.decodeValue(v.StringValue()); ok {
p.writef("(%s) ", kind)
p.printPropertyValue(vv)
return
}
if p.truncateOutput {
p.writef("%q", p.truncatePropertyString(v.StringValue()))
} else {
p.writef("%q", v.StringValue())
}
} else if v.IsComputed() || v.IsOutput() {
// We render computed and output values differently depending on whether or not we are
// planning or deploying: in the former case, we display `computed<type>` or `output<type>`;
// in the former we display `undefined`. This is because we currently cannot distinguish
// between user-supplied undefined values and input properties that are undefined because
// they were sourced from undefined values in other resources' output properties. Once we
// have richer information about the dataflow between resources, we should be able to do a
// better job here (pulumi/pulumi#234).
if p.planning {
p.writeVerbatim(v.TypeString())
} else {
p.writef("undefined")
}
} else if v.IsSecret() {
p.writef("[secret]")
} else {
contract.Failf("Unexpected property value kind '%v'", v)
}
}
func (p *propertyPrinter) printDelete(v resource.PropertyValue, title func(*propertyPrinter)) {
p = p.withOp(deploy.OpDelete).withPrefix(true)
title(p)
p.printPropertyValue(v)
}
func (p *propertyPrinter) printAdd(v resource.PropertyValue, title func(*propertyPrinter)) {
p = p.withOp(deploy.OpCreate).withPrefix(true)
title(p)
p.printPropertyValue(v)
}
func (p *propertyPrinter) printArchiveDiff(titleFunc func(*propertyPrinter),
oldArchive, newArchive *archive.Archive,
) {
p = p.withOp(deploy.OpUpdate).withPrefix(true)
hashChange := getTextChangeString(shortHash(oldArchive.Hash), shortHash(newArchive.Hash))
if oldPath, has := oldArchive.GetPath(); has {
if newPath, has := newArchive.GetPath(); has {
titleFunc(p)
p.writef("archive(file:%s) { %s }\n", hashChange, getTextChangeString(oldPath, newPath))
return
}
} else if oldURI, has := oldArchive.GetURI(); has {
if newURI, has := newArchive.GetURI(); has {
titleFunc(p)
p.writef("archive(uri:%s) { %s }\n", hashChange, getTextChangeString(oldURI, newURI))
return
}
} else if oldAssets, has := oldArchive.GetAssets(); has {
if newAssets, has := newArchive.GetAssets(); has {
titleFunc(p)
p.writef("archive(assets:%s) {\n", hashChange)
p.indented(1).printAssetsDiff(oldAssets, newAssets)
p.writeUnprefixedIndentedf("}\n")
return
}
}
// Type of archive changed, print this out as an remove and an add.
p.printDelete(assetOrArchiveToPropertyValue(oldArchive), titleFunc)
p.printAdd(assetOrArchiveToPropertyValue(newArchive), titleFunc)
}
func (p *propertyPrinter) printAssetsDiff(oldAssets, newAssets map[string]interface{}) {
// Diffing assets proceeds by getting the sorted list of asset names from both the old and
// new assets, and then stepwise processing each. For any asset in old that isn't in new,
// we print this out as a delete. For any asset in new that isn't in old, we print this out
// as an add. For any asset in both we print out of it is unchanged or not. If so, we
// recurse on that data to print out how it changed.
oldNames := slice.Prealloc[string](len(oldAssets))
newNames := slice.Prealloc[string](len(newAssets))
for name := range oldAssets {
oldNames = append(oldNames, name)
}
for name := range newAssets {
newNames = append(newNames, name)
}
sort.Strings(oldNames)
sort.Strings(newNames)
i := 0
j := 0
keys := slice.Prealloc[resource.PropertyKey](len(oldNames) + len(newNames))
for _, name := range oldNames {
keys = append(keys, "\""+resource.PropertyKey(name)+"\"")
}
for _, name := range newNames {
keys = append(keys, "\""+resource.PropertyKey(name)+"\"")
}
maxkey := maxKey(keys)
for i < len(oldNames) || j < len(newNames) {
deleteOld := false
addNew := false
if i < len(oldNames) && j < len(newNames) {
oldName := oldNames[i]
newName := newNames[j]
if oldName == newName {
titleFunc := propertyTitlePrinter("\""+oldName+"\"", maxkey)
old := oldAssets[oldName]
new := newAssets[newName]
// If the assets/archvies haven't changed, then don't bother printing them out.
// This happens routinely when we have an archive that has changed because some
// asset it in it changed. We want *that* asset to be printed, but not all the
// unchanged assets.
switch t := old.(type) {
case *archive.Archive:
newArchive, newIsArchive := new.(*archive.Archive)
switch {
case !newIsArchive:
p.printAssetArchiveDiff(titleFunc, t, new)
case t.Hash != newArchive.Hash:
p.printArchiveDiff(titleFunc, t, newArchive)
}
case *asset.Asset:
newAsset, newIsAsset := new.(*asset.Asset)
switch {
case !newIsAsset:
p.printAssetArchiveDiff(titleFunc, t, new)
case t.Hash != newAsset.Hash:
p.printAssetDiff(titleFunc, t, newAsset)
}
}
i++
j++
continue
}
if oldName < newName {
deleteOld = true
} else {
addNew = true
}
} else if i < len(oldNames) {
deleteOld = true
} else {
addNew = true
}
if deleteOld {
oldName := oldNames[i]
titleFunc := propertyTitlePrinter("\""+oldName+"\"", maxkey)
p.indented(1).printDelete(assetOrArchiveToPropertyValue(oldAssets[oldName]), titleFunc)
i++
} else {
contract.Assertf(addNew, "expected to print new asset")
newName := newNames[j]
titleFunc := propertyTitlePrinter("\""+newName+"\"", maxkey)
p.indented(1).printAdd(assetOrArchiveToPropertyValue(newAssets[newName]), titleFunc)
j++
}
}
}
func (p *propertyPrinter) printAssetDiff(titleFunc func(*propertyPrinter), oldAsset, newAsset *asset.Asset) {
contract.Assertf(oldAsset.Hash != newAsset.Hash, "Should not call printAssetDiff on unchanged assets")
p = p.withOp(deploy.OpUpdate).withPrefix(true)
// if the asset changed, print out: ~ assetName: type(hash->hash) details...
hashChange := getTextChangeString(shortHash(oldAsset.Hash), shortHash(newAsset.Hash))
if oldAsset.IsText() {
if newAsset.IsText() {
titleFunc(p)
p.writef("asset(text:%s) {", hashChange)
massagedOldText := codeasset.MassageIfUserProgramCodeAsset(oldAsset, p.debug).Text
massagedNewText := codeasset.MassageIfUserProgramCodeAsset(newAsset, p.debug).Text
p.indented(1).printTextDiff(massagedOldText, massagedNewText)
p.writeUnprefixedIndentedf("}\n")
return
}
} else if oldPath, has := oldAsset.GetPath(); has {
if newPath, has := newAsset.GetPath(); has {
titleFunc(p)
p.writef("asset(file:%s) { %s }\n", hashChange, getTextChangeString(oldPath, newPath))
return
}
} else if oldURI, has := oldAsset.GetURI(); has {
if newURI, has := newAsset.GetURI(); has {
titleFunc(p)
p.writef("asset(uri:%s) { %s }\n", hashChange, getTextChangeString(oldURI, newURI))
return
}
}
// Type of asset changed, print this out as an remove and an add.
p.printDelete(assetOrArchiveToPropertyValue(oldAsset), titleFunc)
p.printAdd(assetOrArchiveToPropertyValue(newAsset), titleFunc)
}
func (p *propertyPrinter) printAssetArchiveDiff(titleFunc func(p *propertyPrinter), old, new interface{}) {
p.printDelete(assetOrArchiveToPropertyValue(old), titleFunc)
p.printAdd(assetOrArchiveToPropertyValue(new), titleFunc)
}
func getTextChangeString(old string, new string) string {
if old == new {
return old
}
return fmt.Sprintf("%s->%s", old, new)
}
func escape(s string) string {
escaped := strconv.Quote(s)
return escaped[1 : len(escaped)-1]
}
func (p *propertyPrinter) printTextDiff(old, new string) {
if p.printEncodedValueDiff(old, new) {
return
}
differ := diffmatchpatch.New()
differ.DiffTimeout = 0
singleLine := !strings.ContainsRune(old, '\n') && !strings.ContainsRune(new, '\n')
if singleLine {
diff := differ.DiffMain(old, new, false)
p.printCharacterDiff(differ.DiffCleanupEfficiency(diff))
} else {
hashed1, hashed2, lineArray := differ.DiffLinesToChars(old, new)
diffs := differ.DiffMain(hashed1, hashed2, false)
p.indented(1).printLineDiff(differ.DiffCharsToLines(diffs, lineArray))
}
}
func (p *propertyPrinter) printCharacterDiff(diffs []diffmatchpatch.Diff) {
// write the old text.
p.writeVerbatim(`"`)
for _, d := range diffs {
switch d.Type {
case diffmatchpatch.DiffDelete:
p.withOp(deploy.OpDelete).writeVerbatim(escape(d.Text))
case diffmatchpatch.DiffEqual:
p.withOp(deploy.OpSame).writeVerbatim(escape(d.Text))
case diffmatchpatch.DiffInsert:
// An insert has no old text
}
}
p.writeVerbatim(`"`)
p.writeVerbatim(" => ")
// write the new text.
p.writeVerbatim(`"`)
for _, d := range diffs {
switch d.Type {
case diffmatchpatch.DiffInsert:
p.withOp(deploy.OpCreate).writeVerbatim(escape(d.Text))
case diffmatchpatch.DiffEqual:
p.withOp(deploy.OpSame).writeVerbatim(escape(d.Text))
case diffmatchpatch.DiffDelete:
// A delete has no new text
}
}
p.writeVerbatim("\"\n")
}
// printLineDiff takes the full diff produed by diffmatchpatch and condenses it into something
// useful we can print to the console. Specifically, while it includes any adds/removes in
// green/red, it will also show portions of the unchanged text to help give surrounding context to
// those add/removes. Because the unchanged portions may be very large, it only included around 3
// lines before/after the change.
func (p *propertyPrinter) printLineDiff(diffs []diffmatchpatch.Diff) {
p.writeVerbatim("\n")
writeDiff := func(op display.StepOp, text string) {
prefix := op == deploy.OpCreate || op == deploy.OpDelete
p.withOp(op).withPrefix(prefix).writeIndentedf("%s", text)
}
for index, diff := range diffs {
text := diff.Text
lines := strings.Split(text, "\n")
printLines := func(op display.StepOp, startInclusive int, endExclusive int) {
for i := startInclusive; i < endExclusive; i++ {
if strings.TrimSpace(lines[i]) != "" {
writeDiff(op, lines[i])
p.writeString("\n")
}
}
}
switch diff.Type {
case diffmatchpatch.DiffInsert:
printLines(deploy.OpCreate, 0, len(lines))
case diffmatchpatch.DiffDelete:
printLines(deploy.OpDelete, 0, len(lines))
case diffmatchpatch.DiffEqual:
var trimmedLines []string
for _, line := range lines {
if strings.TrimSpace(line) != "" {
trimmedLines = append(trimmedLines, line)
}
}
lines = trimmedLines
const contextLines = 2
// Show the unchanged text in white.
if index == 0 {
// First chunk of the file.
if len(lines) > contextLines+1 {
writeDiff(deploy.OpSame, "...\n")
printLines(deploy.OpSame, len(lines)-contextLines, len(lines))
continue
}
} else if index == len(diffs)-1 {
if len(lines) > contextLines+1 {
printLines(deploy.OpSame, 0, contextLines)
writeDiff(deploy.OpSame, "...\n")
continue
}
} else {
if len(lines) > (2*contextLines + 1) {
printLines(deploy.OpSame, 0, contextLines)
writeDiff(deploy.OpSame, "...\n")
printLines(deploy.OpSame, len(lines)-contextLines, len(lines))
continue
}
}
printLines(deploy.OpSame, 0, len(lines))
}
}
}
func (p *propertyPrinter) printEncodedValueDiff(old, new string) bool {
oldValue, oldKind, ok := p.decodeValue(old)
if !ok {
return false
}
newValue, newKind, ok := p.decodeValue(new)
if !ok {
return false
}
// If the decoded values are the same, then print a text diff as an object diff won't show any changes.
if oldValue.DeepEquals(newValue) {
p.printTextDiff(strconv.Quote(old), strconv.Quote(new))
return true
}
if oldKind == newKind {
p.writef("(%s) ", oldKind)
} else {
p.writef("(%s => %s) ", oldKind, newKind)
}
diff := oldValue.Diff(newValue, resource.IsInternalPropertyKey)
if diff == nil {
p.withOp(deploy.OpSame).printPropertyValue(oldValue)
return true
}
p.printPropertyValueDiff(func(*propertyPrinter) {}, *diff)
return true
}
// decodeValue attempts to decode a string as JSON or YAML. The second return value is the kind of value that was
// decoded, either "json" or "yaml".
func (p *propertyPrinter) decodeValue(repr string) (resource.PropertyValue, string, bool) {
decode := func() (interface{}, string, bool) {
// Strip whitespace for the purposes of decoding.
repr = strings.TrimSpace(repr)
r := strings.NewReader(repr)
jsonDecoder := json.NewDecoder(r)
var object interface{}
if err := jsonDecoder.Decode(&object); err == nil {
// Make sure _all_ the string was consumed as JSON.
if !jsonDecoder.More() {
return object, "json", true
}
}
// Only attempt to decode a YAML value if the representation is a multi-line string.
// This avoids decoding simple strings like "foo: bar" or "-" as YAML.
if !strings.ContainsAny(repr, "\r\n") {
return nil, "", false
}
r.Reset(repr)
yamlDecoder := yaml.NewDecoder(r)
if err := yamlDecoder.Decode(&object); err == nil {
// Make sure _all_ the string was consumed as YAML. Unlike JsonDecoder above, the YamlDecoder
// doesn't give an easy way to do this, so our workaround is we ask it to try and decode another
// value, and if it fails with io.EOF, then we know we've consumed the whole string.
var ignored interface{}
eofErr := yamlDecoder.Decode(&ignored)
if errors.Is(eofErr, io.EOF) {
translated, ok := p.translateYAMLValue(object)
if !ok {
return nil, "", false
}
return translated, "yaml", true
}
}
return nil, "", false
}
object, kind, ok := decode()
if ok {
switch object.(type) {
case []interface{}, map[string]interface{}:
return resource.NewPropertyValue(object), kind, true
}
}
return resource.PropertyValue{}, "", false
}
// translateYAMLValue attempts to replace map[interface{}]interface{} values in a decoded YAML value with
// map[string]interface{} values. map[interface{}]interface{} values can arise from YAML mappings with keys that are
// not strings. This method only translates such maps if they have purely numeric keys--maps with slice or map keys
// are not translated.
func (p *propertyPrinter) translateYAMLValue(v interface{}) (interface{}, bool) {
switch v := v.(type) {
case []interface{}:
for i, e := range v {
ee, ok := p.translateYAMLValue(e)
if !ok {
return nil, false
}
v[i] = ee
}
return v, true
case map[string]interface{}:
for k, e := range v {
ee, ok := p.translateYAMLValue(e)
if !ok {
return nil, false
}
v[k] = ee
}
return v, true
case map[interface{}]interface{}:
vv := make(map[string]interface{}, len(v))
for k, e := range v {
var sk string
switch k := k.(type) {
case string:
sk = k
case int:
sk = strconv.FormatInt(int64(k), 10)
case int64:
sk = strconv.FormatInt(k, 10)
case uint64:
sk = strconv.FormatUint(k, 10)
case float64:
sk = strconv.FormatFloat(k, 'g', -1, 64)
default:
return nil, false
}
ee, ok := p.translateYAMLValue(e)
if !ok {
return nil, false
}
vv[sk] = ee
}
return vv, true
default:
return v, true
}
}
// if string exceeds three lines or is >150 characters, truncate and add "..."
func (p *propertyPrinter) truncatePropertyString(propertyString string) string {
const (
contextLines = 3
maxLineLength = 150
)
lines := strings.Split(propertyString, "\n")
numLines := len(lines)
if numLines > contextLines {
numLines = contextLines
}
isTruncated := false
for i := 0; i < numLines; i++ {
if len(lines[i]) > maxLineLength {
lines[i] = lines[i][:maxLineLength] + "..."
isTruncated = true
}
}
if !isTruncated {
return propertyString
}
if len(lines) <= contextLines {
return strings.Join(lines, "\n")
}
return strings.Join(lines[:numLines], "\n") + "\n..."
}