pulumi/sdk/nodejs/runtime/closure/createClosure.ts

1625 lines
67 KiB
TypeScript

// Copyright 2016-2022, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/* eslint-disable max-len */
import * as upath from "upath";
import { builtinModules as nodeBuiltinModules } from "node:module";
import { ResourceError } from "../../errors";
import { Input, isSecretOutput, Output } from "../../output";
import * as resource from "../../resource";
import { hasTrueBooleanMember, hasFunctionMember } from "../../utils";
import { CapturedPropertyChain, CapturedPropertyInfo, CapturedVariableMap } from "./parseFunction";
import * as parseFunctionModule from "./parseFunction";
import { rewriteSuperReferences } from "./rewriteSuper";
import { getModuleFromPath } from "./package";
import * as utils from "./utils";
import * as v8 from "./v8";
/**
* @internal
*/
export interface ObjectInfo {
/**
* Information about the prototype of this object/function. If this is an
* object, we only store this if the object's prototype is not
* `Object.prototype`. If this is a function, we only store this if the
* function's prototype is not `Function.prototype`.
*/
proto?: Entry;
/**
* Information about the properties of the object. We store all properties
* of the object, regardless of whether they have string or symbol names.
*/
env: PropertyMap;
}
/**
* Information about a JavaScript function. Note that this derives from
* {@link ObjectInfo} as all functions are objects in JavaScript, and thus can
* have their own proto and properties.
*
* @internal
*/
export interface FunctionInfo extends ObjectInfo {
/**
* A serialization of the function's source code as text.
*/
code: string;
/**
* The captured lexical environment of names to values, if any.
*/
capturedValues: PropertyMap;
/**
* Whether or not the real `this` (i.e. not a lexically-captured `this`) is
* used in the function.
*/
usesNonLexicalThis: boolean;
/**
* The name that the function was declared with. Used only for trying to
* emit a better name into the serialized code for it.
*/
name: string | undefined;
/**
* The number of parameters this function is declared to take. Used to
* generate a serialized function with the same number of parameters. This
* is valuable as some third-party libraries (like senchalabs:
* https://github.com/senchalabs/connect/blob/fa8916e6350e01262e86ccee82f490c65e04c728/index.js#L232-L241)
* will introspect function parameter counts to decide what to do.
*/
paramCount: number;
}
/**
* Similar to {@link PropertyDescriptor}. Helps describe an Entry in the case
* where it is not simple.
*
* @internal
*/
export interface PropertyInfo {
/**
* If the property has a value we should directly provide when calling `.defineProperty`
*/
hasValue: boolean;
// These have the same meanings as in `PropertyDescriptor`.
configurable?: boolean;
enumerable?: boolean;
writable?: boolean;
// The entries we've made for custom getters/setters if the property is defined that
// way.
//
get?: Entry;
set?: Entry;
}
/**
* Information about a property. Specifically the actual entry containing the
* data about it and then an optional {@link PropertyInfo} in the case that this
* isn't just a common property.
*
* @internal
*/
export interface PropertyInfoAndValue {
info?: PropertyInfo;
entry: Entry;
}
/**
* A mapping between the name of a property (symbolic or string) to information about the
* value for that property.
*
* @internal
*/
export type PropertyMap = Map<Entry, PropertyInfoAndValue>;
/**
* Entry is the environment slot for a named lexically-captured variable.
*
* @internal
*/
export interface Entry {
/**
* A value which can be safely json serialized.
*/
json?: any;
/**
* A RegExp, which will be serialized as `new RegExp(re.source, re.flags)`
*/
regexp?: { source: string; flags: string };
/**
* A closure we are dependent on.
*/
function?: FunctionInfo;
/**
* An object which may contain nested closures. Can include an optional
* proto if the user is not using the default `Object.prototype`.
*/
object?: ObjectInfo;
/**
* An array which may contain nested closures.
*/
array?: Entry[];
/**
* A reference to a requirable module name.
*/
module?: string;
/**
* A promise value. This will be serialized as the underlying value the promise
* points to, and deserialized as `Promise.resolve(<underlying_value>)`
*/
promise?: Entry;
/**
* An `Output<T>` property. This will be serialized over as a `get()` method that
* returns the raw underlying value.
*/
output?: Entry;
/**
* A simple expression to use to represent this instance. For example "global.Number";
*/
expr?: string;
}
interface Context {
/**
* The cache stores a map of objects to the entries we've created for them.
* It's used so that we only ever create a single environemnt entry for a
* single object. i.e. if we hit the same object multiple times while
* walking the memory graph, we only emit it once.
*/
cache: Map<Object, Entry>;
/**
* The 'frames' we push/pop as we're walking the object graph serializing
* things. These frames allow us to present a useful error message to the
* user in the context of their code as opposed the async callstack we have
* while serializing.
*/
frames: ContextFrame[];
/**
* A mapping from a class method/constructor to the environment entry corresponding to the
* `__super` value. When we emit the code for any class member we will end up adding
*
* ```
* with ( { __super: <...> })
* ```
*
* We will also rewrite usages of "super" in the methods to refer to
* `__super`. This way we can accurately serialize out the class members,
* while preserving functionality.
*/
classInstanceMemberToSuperEntry: Map<Function, Entry>;
classStaticMemberToSuperEntry: Map<Function, Entry>;
/**
* A list of "simple" functions. Simple functions do not capture anything,
* do not have any special properties on them, and do not have a custom
* prototype. If we run into multiple functions that are simple, and share
* the same code, then we can just emit the function once for them. A good
* example of this is the `__awaiter` function. Normally, there will be one
* `__awaiter` per `.js` file that uses `async`/`await`. Instead of needing
* to generate serialized functions for each of those, we can just serialize
* out the function once.
*/
simpleFunctions: FunctionInfo[];
/**
* The resource to log any errors we encounter against.
*/
logResource: resource.Resource | undefined;
/**
* Indicates whether any secret values were serialized during this function serialization.
*/
containsSecrets: boolean;
}
interface FunctionLocation {
func: Function;
file: string;
line: number;
column: number;
functionString: string;
isArrowFunction?: boolean;
}
interface ContextFrame {
functionLocation?: FunctionLocation;
capturedFunctionName?: string;
capturedVariableName?: string;
capturedModule?: { name: string; value: any };
}
interface ClosurePropertyDescriptor {
/**
* The name of the property for a normal property. Either `name` or `symbol`
* will be present, but not both.
* */
name?: string;
/**
* The symbol name of the property. Either `name` or `symbol` will be
* present, but not both.
*/
symbol?: symbol;
configurable?: boolean;
enumerable?: boolean;
value?: any;
writable?: boolean;
get?: () => any;
set?: (v: any) => void;
}
/**
* {@link SerializedOutput} is the type we convert real deployment-time outputs
* to when we serialize them into the environment for a closure. The output
* will go from something you call `apply` on to transform during deployment, to
* something you call `.get` on to get the raw underlying value from inside a
* cloud callback.
*
* IMPORTANT: Do not change the structure of this type. Closure serialization
* code takes a dependency on the actual shape (including the names of
* properties like `value`).
*/
class SerializedOutput<T> {
public constructor(private readonly value: T) {}
public apply<U>(func: (t: T) => Input<U>): Output<U> {
throw new Error(
"'apply' is not allowed from inside a cloud-callback. Use 'get' to retrieve the value of this Output directly.",
);
}
public get(): T {
return this.value;
}
}
export interface ClosureInfo {
func: FunctionInfo;
containsSecrets: boolean;
}
/**
* Serializes a function and its closure environment into a form that is
* amenable to persistence as simple JSON. Like {@link toString}, it includes
* the full text of the function's source code, suitable for execution. Unlike
* `toString`, it actually includes information about the captured environment.
*
* @internal
*/
export async function createClosureInfoAsync(
func: Function,
serialize: (o: any) => boolean,
logResource: resource.Resource | undefined,
): Promise<ClosureInfo> {
// Initialize our Context object. It is effectively used to keep track of the work we're doing
// as well as to keep track of the graph as we're walking it so we don't infinitely recurse.
const context: Context = {
cache: new Map(),
classInstanceMemberToSuperEntry: new Map(),
classStaticMemberToSuperEntry: new Map(),
frames: [],
simpleFunctions: [],
logResource,
containsSecrets: false,
};
// Pre-populate our context's cache with global well-known values. These are values for things
// like global.Number, or Function.prototype. Actually trying to serialize/deserialize these
// would be a bad idea as that would mean once deserialized the objects wouldn't point to the
// well known globals that were expected. Furthermore, most of these are almost certain to fail
// to serialize due to hitting things like native-builtins.
await addEntriesForWellKnownGlobalObjectsAsync();
// Make sure this func is in the cache itself as we may hit it again while recursing.
const entry: Entry = {};
context.cache.set(func, entry);
entry.function = await analyzeFunctionInfoAsync(func, context, serialize);
return {
func: entry.function,
containsSecrets: context.containsSecrets,
};
async function addEntriesForWellKnownGlobalObjectsAsync() {
const seenGlobalObjects = new Set<any>();
// Front load these guys so we prefer emitting code that references them directly,
// instead of in unexpected ways. i.e. we'd prefer to have Number.prototype vs
// Object.getPrototypeOf(Infinity) (even though they're the same thing.)
await addGlobalInfoAsync("Object");
await addGlobalInfoAsync("Function");
await addGlobalInfoAsync("Array");
await addGlobalInfoAsync("Number");
await addGlobalInfoAsync("String");
for (let current = global; current; current = Object.getPrototypeOf(current)) {
for (const key of Object.getOwnPropertyNames(current)) {
// "GLOBAL" and "root" are deprecated and give warnings if you try to access them. So
// just skip them.
if (key !== "GLOBAL" && key !== "root") {
await addGlobalInfoAsync(key);
}
}
}
// Add information so that we can properly serialize over generators/iterators.
await addGeneratorEntriesAsync();
await addEntriesAsync(Symbol.iterator, "Symbol.iterator");
return;
async function addEntriesAsync(val: any, emitExpr: string, recurse = false) {
if (val === undefined || val === null) {
return;
}
// No need to add values twice. Ths can happen as we walk the global namespace and
// sometimes run into multiple names aliasing to the same value.
if (seenGlobalObjects.has(val)) {
return;
}
seenGlobalObjects.add(val);
context.cache.set(val, { expr: emitExpr });
// For global objects, we want to recurse into them to find all
// their properties and add entries for them. This allows us to
// recognize these builtins when they have been aliased, for
// example if we have `const isArray = Array.isArray` and capture
// `isArray` in the function, we want to emit the expression
// `Array.isArray` for the captured value.
if (recurse) {
for (const propName of Object.getOwnPropertyNames(val)) {
const desc = Object.getOwnPropertyDescriptor(val, propName);
if (desc?.value && typeof desc.value === "function") {
addEntriesAsync(desc?.value, `${emitExpr}.${propName}`, recurse);
}
}
}
}
async function addGlobalInfoAsync(key: string) {
const globalObj = (<any>global)[key];
const text = utils.isLegalMemberName(key) ? `global.${key}` : `global["${key}"]`;
if (globalObj !== undefined && globalObj !== null) {
await addEntriesAsync(globalObj, text, /* recurse */ true);
await addEntriesAsync(
Object.getPrototypeOf(globalObj),
`Object.getPrototypeOf(${text})`,
/* recurse */ true,
);
await addEntriesAsync(globalObj.prototype, `${text}.prototype`, /* recurse */ true);
}
}
// A generator function ('f') has ends up creating two interesting objects in the js
// environment:
//
// 1. the generator function itself ('f'). This generator function has an __proto__ that is
// shared will all other generator functions.
//
// 2. a property 'prototype' on 'f'. This property's __proto__ will be shared will all other
// 'prototype' properties of other generator functions.
//
// So, to properly serialize a generator, we stash these special objects away so that we can
// refer to the well known instance on the other side when we desirialize. Otherwise, if we
// actually tried to deserialize the instances/prototypes we have we would end up failing when
// we hit native functions.
//
// see http://www.ecma-international.org/ecma-262/6.0/#sec-generatorfunction-objects and
// http://www.ecma-international.org/ecma-262/6.0/figure-2.png
async function addGeneratorEntriesAsync() {
// eslint-disable-next-line no-empty,no-empty-function,@typescript-eslint/no-empty-function
const emptyGenerator = function* (): any {};
await addEntriesAsync(Object.getPrototypeOf(emptyGenerator), "Object.getPrototypeOf(function*(){})");
await addEntriesAsync(
Object.getPrototypeOf(emptyGenerator.prototype),
"Object.getPrototypeOf((function*(){}).prototype)",
);
}
}
}
// This function ends up capturing many external modules that cannot themselves be serialized.
// Do not allow it to be captured.
(<any>createClosureInfoAsync).doNotCapture = true;
/**
* Does the work to create an asynchronous dataflow graph that resolves to a
* final {@link FunctionInfo}.
*/
async function analyzeFunctionInfoAsync(
func: Function,
context: Context,
serialize: (o: any) => boolean,
logInfo?: boolean,
): Promise<FunctionInfo> {
// logInfo = logInfo || func.name === "addHandler";
const { file, line, column } = await v8.getFunctionLocationAsync(func);
let functionString = func.toString();
const frame = { functionLocation: { func, file, line, column, functionString, isArrowFunction: false } };
context.frames.push(frame);
const result = await serializeWorkerAsync();
context.frames.pop();
if (isSimple(result)) {
const existingSimpleFunction = findSimpleFunction(result);
if (existingSimpleFunction) {
return existingSimpleFunction;
}
context.simpleFunctions.push(result);
}
return result;
function isSimple(info: FunctionInfo) {
return info.capturedValues.size === 0 && info.env.size === 0 && !info.proto;
}
function findSimpleFunction(info: FunctionInfo) {
for (const other of context.simpleFunctions) {
if (other.code === info.code && other.usesNonLexicalThis === info.usesNonLexicalThis) {
return other;
}
}
return undefined;
}
async function serializeWorkerAsync(): Promise<FunctionInfo> {
const funcEntry = context.cache.get(func);
if (!funcEntry) {
throw new Error("Entry for this this function was not created by caller");
}
const capturedValues: PropertyMap = new Map();
// If the function is a native function, it is most likely the result of `Function.bind`.
// We get the target function via the debugger API, along with the boundThis and boundArgs
// values and create a new function using the target function's text representation and
// rebind it. The boundThis and boundArgs values are manually captured.
//
// TODO: This does not handle multiple binds correctly.
// For example (function () { ... }).bind("a").bind("b") will fail to serialize correctly.
if (parseFunctionModule.isNativeFunction(functionString)) {
try {
const { targetFunctionText, boundThisValue, boundArgsValues } = await v8.getBoundFunction(func);
const boundThis = "__pulumi_bound_this";
const boundArgs = boundArgsValues.map((_: any, i: number) => `__pulumi_bound_arg_${i}`).join(", ");
const boundArgsString = boundArgs.length > 0 ? `, ${boundArgs}` : "";
functionString =
`function (...args) {\n` +
` return (\n` +
`${targetFunctionText}\n` +
` ).bind(${boundThis}${boundArgsString})(...args);\n` +
`}`;
const serializedName = await getOrCreateNameEntryAsync(
"__pulumi_bound_this",
undefined,
context,
serialize,
logInfo,
);
const serializedValue = await getOrCreateEntryAsync(
boundThisValue,
undefined,
context,
serialize,
logInfo,
);
capturedValues.set(serializedName, { entry: serializedValue });
for (const [i, boundArg] of boundArgsValues.entries()) {
const name = await getOrCreateNameEntryAsync(
`__pulumi_bound_arg_${i}`,
undefined,
context,
serialize,
logInfo,
);
const value = await getOrCreateEntryAsync(boundArg, undefined, context, serialize, logInfo);
capturedValues.set(name, { entry: value });
}
} catch (err) {
throwSerializationError(func, context, err.message);
}
}
// First, convert the js func object to a reasonable stringified version that we can operate on.
// Importantly, this function helps massage all the different forms that V8 can produce to
// either a "function (...) { ... }" form, or a "(...) => ..." form. In other words, all
// 'funky' functions (like classes and whatnot) will be transformed to reasonable forms we can
// process down the pipeline.
const pf: typeof parseFunctionModule = require("./parseFunction");
const [error, parsedFunction] = pf.parseFunction(functionString);
if (error) {
throwSerializationError(func, context, error);
}
const funcExprWithName = parsedFunction.funcExprWithName;
const functionDeclarationName = parsedFunction.functionDeclarationName;
frame.functionLocation.isArrowFunction = parsedFunction.isArrowFunction;
await processCapturedVariablesAsync(parsedFunction.capturedVariables.required, /*throwOnFailure:*/ true);
await processCapturedVariablesAsync(parsedFunction.capturedVariables.optional, /*throwOnFailure:*/ false);
const functionInfo: FunctionInfo = {
code: parsedFunction.funcExprWithoutName,
capturedValues: capturedValues,
env: new Map(),
usesNonLexicalThis: parsedFunction.usesNonLexicalThis,
name: functionDeclarationName,
paramCount: func.length,
};
const proto = Object.getPrototypeOf(func);
const isAsyncFunction = await computeIsAsyncFunction(func);
// Ensure that the prototype of this function is properly serialized as well. We only need to do
// this for functions with a custom prototype (like a derived class constructor, or a function
// that a user has explicit set the prototype for). Normal functions will pick up
// Function.prototype by default, so we don't need to do anything for them.
if (proto !== Function.prototype && !isAsyncFunction && !isDerivedNoCaptureConstructor(func)) {
const protoEntry = await getOrCreateEntryAsync(proto, undefined, context, serialize, logInfo);
functionInfo.proto = protoEntry;
if (functionString.startsWith("class ")) {
// This was a class (which is effectively synonymous with a constructor-function).
// We also know that it's a derived class because of the `proto !==
// Function.prototype` check above. (The prototype of a non-derived class points at
// Function.prototype).
//
// they're a bit trickier to serialize than just a straight function. Specifically,
// we have to keep track of the inheritance relationship between classes. That way
// if any of the class members references 'super' we'll be able to rewrite it
// accordingly (since we emit classes as Functions)
await processDerivedClassConstructorAsync(protoEntry);
// Because this was was class constructor function, rewrite any 'super' references
// in it do its derived type if it has one.
functionInfo.code = rewriteSuperReferences(funcExprWithName!, /*isStatic*/ false);
}
}
// capture any properties placed on the function itself. Don't bother with
// "length/name" as those are not things we can actually change.
for (const descriptor of await getOwnPropertyDescriptors(func)) {
if (descriptor.name === "length" || descriptor.name === "name") {
continue;
}
const funcProp = await getOwnPropertyAsync(func, descriptor);
// We don't need to emit code to serialize this function's .prototype object
// unless that .prototype object was actually changed.
//
// In other words, in general, we will not emit the prototype for a normal
// 'function foo() {}' declaration. but we will emit the prototype for the
// constructor function of a class.
if (descriptor.name === "prototype" && (await isDefaultFunctionPrototypeAsync(func, funcProp))) {
continue;
}
const keyEntry = await getOrCreateEntryAsync(
getNameOrSymbol(descriptor),
undefined,
context,
serialize,
logInfo,
);
const valEntry = await getOrCreateEntryAsync(funcProp, undefined, context, serialize, logInfo);
const propertyInfo = await createPropertyInfoAsync(descriptor, context, serialize, logInfo);
functionInfo.env.set(keyEntry, { info: propertyInfo, entry: valEntry });
}
const superEntry =
context.classInstanceMemberToSuperEntry.get(func) || context.classStaticMemberToSuperEntry.get(func);
if (superEntry) {
// this was a class constructor or method. We need to put a special __super
// entry into scope, and then rewrite any calls to super() to refer to it.
capturedValues.set(await getOrCreateNameEntryAsync("__super", undefined, context, serialize, logInfo), {
entry: superEntry,
});
functionInfo.code = rewriteSuperReferences(
funcExprWithName!,
context.classStaticMemberToSuperEntry.has(func),
);
}
// If this was a named function (literally, only a named function-expr or function-decl), then
// place an entry in the environment that maps from this function name to the serialized
// function we're creating. This ensures that recursive functions will call the right method.
// i.e if we have "function f() { f(); }" this will get rewritten to:
//
// function __f() {
// with ({ f: __f }) {
// return function () { f(); }
//
// i.e. the inner call to "f();" will actually call the *outer* __f function, and not
// itself.
if (functionDeclarationName !== undefined) {
capturedValues.set(
await getOrCreateNameEntryAsync(functionDeclarationName, undefined, context, serialize, logInfo),
{ entry: funcEntry },
);
}
return functionInfo;
async function processCapturedVariablesAsync(
capturedVariables: CapturedVariableMap,
throwOnFailure: boolean,
): Promise<void> {
for (const name of capturedVariables.keys()) {
// We have a special case for __pulumi_bound_this and __pulumi_bound_arg_X.
// We manually inject these variables into the closure environment of a
// function when we rewrite bound functions.
if (name.startsWith("__pulumi_bound_")) {
continue;
}
let value: any;
try {
value = await v8.lookupCapturedVariableValueAsync(func, name, throwOnFailure);
} catch (err) {
throwSerializationError(func, context, err.message);
}
const moduleName = await findNormalizedModuleNameAsync(value);
const frameLength = context.frames.length;
if (moduleName) {
context.frames.push({ capturedModule: { name: moduleName, value: value } });
} else if (value instanceof Function) {
// Only bother pushing on context frame if the name of the variable
// we captured is different from the name of the function. If the
// names are the same, this is a direct reference, and we don't have
// to list both the name of the capture and of the function. if they
// are different, it's an indirect reference, and the name should be
// included for clarity.
if (name !== value.name) {
context.frames.push({ capturedFunctionName: name });
}
} else {
context.frames.push({ capturedVariableName: name });
}
await processCapturedVariableAsync(capturedVariables, name, value);
// Only if we pushed a frame on should we pop it off.
if (context.frames.length !== frameLength) {
context.frames.pop();
}
}
}
async function processCapturedVariableAsync(capturedVariables: CapturedVariableMap, name: string, value: any) {
const properties = capturedVariables.get(name);
const serializedName = await getOrCreateNameEntryAsync(name, undefined, context, serialize, logInfo);
// try to only serialize out the properties that were used by the user's code.
const serializedValue = await getOrCreateEntryAsync(value, properties, context, serialize, logInfo);
capturedValues.set(serializedName, { entry: serializedValue });
}
}
async function processDerivedClassConstructorAsync(protoEntry: Entry) {
// Map from derived class' constructor and members, to the entry for the base class (i.e.
// the base class' constructor function). We'll use this when serializing out those members
// to rewrite any usages of 'super' appropriately.
// We're processing the derived class constructor itself. Just map it directly to the base
// class function.
context.classInstanceMemberToSuperEntry.set(func, protoEntry);
// Also, make sure our methods can also find this entry so they too can refer to
// 'super'.
for (const descriptor of await getOwnPropertyDescriptors(func)) {
if (descriptor.name !== "length" && descriptor.name !== "name" && descriptor.name !== "prototype") {
// static method.
const classProp = await getOwnPropertyAsync(func, descriptor);
addIfFunction(classProp, /*isStatic*/ true);
}
}
for (const descriptor of await getOwnPropertyDescriptors(func.prototype)) {
// instance method.
const classProp = await getOwnPropertyAsync(func.prototype, descriptor);
addIfFunction(classProp, /*isStatic*/ false);
}
return;
function addIfFunction(prop: any, isStatic: boolean) {
if (prop instanceof Function) {
const set = isStatic ? context.classStaticMemberToSuperEntry : context.classInstanceMemberToSuperEntry;
set.set(prop, protoEntry);
}
}
}
}
async function computeIsAsyncFunction(func: Function): Promise<boolean> {
// Note, i can't think of a better way to determine this. This is particularly hard because we
// can't even necessary refer to async function objects here as this code is rewritten by TS,
// converting all async functions to non async functions.
return func.constructor && func.constructor.name === "AsyncFunction";
}
function throwSerializationError(func: Function, context: Context, info: string) {
let message = "";
const initialFuncLocation = getFunctionLocation(context.frames[0].functionLocation!);
message += `Error serializing ${initialFuncLocation}\n\n`;
let i = 0;
const n = context.frames.length;
for (; i < n; i++) {
const frame = context.frames[i];
const indentString = " ".repeat(i);
message += indentString;
if (frame.functionLocation) {
const funcLocation = getFunctionLocation(frame.functionLocation);
const nextFrameIsFunction = i < n - 1 && context.frames[i + 1].functionLocation !== undefined;
if (nextFrameIsFunction) {
if (i === 0) {
message += `${funcLocation}: referenced\n`;
} else {
message += `${funcLocation}: which referenced\n`;
}
} else {
if (i === n - 1) {
message += `${funcLocation}: which could not be serialized because\n`;
} else if (i === 0) {
message += `${funcLocation}: captured\n`;
} else {
message += `${funcLocation}: which captured\n`;
}
}
} else if (frame.capturedFunctionName) {
message += `'${frame.capturedFunctionName}', a function defined at\n`;
} else if (frame.capturedModule) {
if (i === n - 1) {
message += `module '${frame.capturedModule.name}'\n`;
} else {
message += `module '${frame.capturedModule.name}' which indirectly referenced\n`;
}
} else if (frame.capturedVariableName) {
message += `variable '${frame.capturedVariableName}' which indirectly referenced\n`;
}
}
message += " ".repeat(i) + info + "\n\n";
message += getTrimmedFunctionCode(func);
const moduleIndex = context.frames.findIndex((f) => f.capturedModule !== undefined);
if (moduleIndex >= 0) {
const module = context.frames[moduleIndex].capturedModule!;
const moduleName = module.name;
message += "\n";
if (hasTrueBooleanMember(module.value, "deploymentOnlyModule")) {
message += `Module '${moduleName}' is a 'deployment only' module. In general these cannot be captured inside a 'run time' function.`;
} else {
const functionLocation = context.frames[moduleIndex - 1].functionLocation!;
const location = getFunctionLocation(functionLocation);
message += `Capturing modules can sometimes cause problems.
Consider using import('${moduleName}') or require('${moduleName}') inside ${location}`;
}
}
// Hide the stack when printing out the closure serialization error. We don't want both the
// closure serialization object stack *and* the function execution stack. Furthermore, there
// is enough information about the Function printed (both line/col, and a few lines of its
// text) to give the user the appropriate info for fixing.
throw new ResourceError(message, context.logResource, /*hideStack:*/ true);
}
function getTrimmedFunctionCode(func: Function): string {
const funcString = func.toString();
// include up to the first 5 lines of the function to help show what is wrong with it.
let split = funcString.split(/\r?\n/);
if (split.length > 5) {
split = split.slice(0, 5);
split.push("...");
}
let code = "Function code:\n";
for (const line of split) {
code += " " + line + "\n";
}
return code;
}
function getFunctionLocation(loc: FunctionLocation): string {
let name = "'" + getFunctionName(loc) + "'";
if (loc.file) {
name += `: ${upath.basename(loc.file)}(${loc.line + 1},${loc.column})`;
}
const prefix = loc.isArrowFunction ? "" : "function ";
return prefix + name;
}
function getFunctionName(loc: FunctionLocation): string {
if (loc.isArrowFunction) {
let funcString = loc.functionString;
// If there's a semicolon in the text, only include up to that. we don't want to pull in
// the entire lambda if it's lots of statements.
const semicolonIndex = funcString.indexOf(";");
if (semicolonIndex >= 0) {
funcString = funcString.slice(0, semicolonIndex + 1) + " ...";
}
// squash all whitespace to single spaces.
funcString = funcString.replace(/\s\s+/g, " ");
const lengthLimit = 40;
if (funcString.length > lengthLimit) {
// Trim the header if its very long.
funcString = funcString.substring(0, lengthLimit - " ...".length) + " ...";
}
return funcString;
}
if (loc.func.name) {
return loc.func.name;
}
return "<anonymous>";
}
async function isDefaultFunctionPrototypeAsync(func: Function, prototypeProp: any) {
// The initial value of prototype on any newly-created Function instance is a new instance of
// Object, but with the own-property 'constructor' set to point back to the new function.
if (prototypeProp && prototypeProp.constructor === func) {
const descriptors = await getOwnPropertyDescriptors(prototypeProp);
return descriptors.length === 1 && descriptors[0].name === "constructor";
}
return false;
}
async function createPropertyInfoAsync(
descriptor: ClosurePropertyDescriptor,
context: Context,
serialize: (o: any) => boolean,
logInfo: boolean | undefined,
): Promise<PropertyInfo> {
const propertyInfo = <PropertyInfo>{ hasValue: descriptor.value !== undefined };
propertyInfo.configurable = descriptor.configurable;
propertyInfo.enumerable = descriptor.enumerable;
propertyInfo.writable = descriptor.writable;
if (descriptor.get) {
propertyInfo.get = await getOrCreateEntryAsync(descriptor.get, undefined, context, serialize, logInfo);
}
if (descriptor.set) {
propertyInfo.set = await getOrCreateEntryAsync(descriptor.set, undefined, context, serialize, logInfo);
}
return propertyInfo;
}
function getOrCreateNameEntryAsync(
name: string,
capturedObjectProperties: CapturedPropertyChain[] | undefined,
context: Context,
serialize: (o: any) => boolean,
logInfo: boolean | undefined,
): Promise<Entry> {
return getOrCreateEntryAsync(name, capturedObjectProperties, context, serialize, logInfo);
}
/**
* Deeply serializes an object into something appropriate for an environment
* entry. If `propNames` is provided, and is non-empty, then only attempt to
* serialize out those specific properties. If `propNames` is not provided, or
* is empty, serialize out all properties.
*/
async function getOrCreateEntryAsync(
obj: any,
capturedObjectProperties: CapturedPropertyChain[] | undefined,
context: Context,
serialize: (o: any) => boolean,
logInfo: boolean | undefined,
): Promise<Entry> {
// Check if this is a special number that we cannot json serialize. Instead, we'll just inject
// the code necessary to represent the number on the other side. Note: we have to do this
// before we do *anything* else. This is because these special numbers don't even work in maps
// properly. So, if we lookup the value in a map, we may get the cached value for something
// else *entirely*. For example, 0 and -0 will map to the same entry.
if (typeof obj === "number") {
if (Object.is(obj, -0)) {
return { expr: "-0" };
}
if (Object.is(obj, NaN)) {
return { expr: "NaN" };
}
if (Object.is(obj, Infinity)) {
return { expr: "Infinity" };
}
if (Object.is(obj, -Infinity)) {
return { expr: "-Infinity" };
}
// Not special, just use normal json serialization.
return { json: obj };
}
// See if we have a cache hit. If yes, use the object as-is.
let entry = context.cache.get(obj)!;
if (entry) {
// Even though we've already serialized out this object, it might be the case
// that we serialized out a different set of properties than the current set
// we're being asked to serialize. So we have to make sure that all these props
// are actually serialized.
if (entry.object) {
await serializeObjectAsync();
}
return entry;
}
if (obj instanceof Function && hasTrueBooleanMember(obj, "doNotCapture")) {
// If we get a function we're not supposed to capture, then actually just serialize
// out a function that will throw at runtime so the user can understand the problem
// better.
const funcName = obj.name || "anonymous";
const funcCode = getTrimmedFunctionCode(obj);
const message =
`Function '${funcName}' cannot be called at runtime. ` +
`It can only be used at deployment time.\n\n${funcCode}`;
const errorFunc = () => {
throw new Error(message);
};
obj = errorFunc;
}
if (obj instanceof Function && hasFunctionMember(obj, "captureReplacement")) {
// If we've defined a replacement function, then use that instead.
// This is best used in the case we'd serialize something with undefined runtime
// behavior. For example, we don't want to serialize out a function that will
// reference unset environment variables etc, so we provide an alternate function
// that will be called at runtime instead.
const funcToSerialize = obj.captureReplacement();
if (!(funcToSerialize instanceof Function)) {
throw new Error("captureReplacement must return a function");
}
obj = funcToSerialize;
}
// We may be processing recursive objects. Because of that, we preemptively put a placeholder
// entry in the cache. That way, if we encounter this obj again while recursing we can just
// return that placeholder.
entry = {};
context.cache.set(obj, entry);
await dispatchAnyAsync();
return entry;
function doNotCapture(): boolean {
if (!serialize(obj)) {
// caller explicitly does not want us to capture this value.
return true;
}
if (hasTrueBooleanMember(obj, "doNotCapture")) {
// object has set itself as something that should not be captured.
return true;
}
if (obj instanceof Function && isDerivedNoCaptureConstructor(obj)) {
// this was a constructor that derived from something that should not be captured.
return true;
}
return false;
}
async function dispatchAnyAsync(): Promise<void> {
const typeofObj: string = typeof obj;
if (doNotCapture()) {
// We do not want to capture this object. Explicit set .json to undefined so
// that we will see that the property is set and we will simply roundtrip this
// as the 'undefined value.
entry.json = undefined;
return;
}
if (obj === undefined || obj === null || typeofObj === "boolean" || typeofObj === "string") {
// Serialize primitives as-is.
entry.json = obj;
return;
} else if (typeofObj === "bigint") {
entry.expr = `${obj}n`;
return;
} else if (obj instanceof RegExp) {
entry.regexp = obj;
return;
}
const normalizedModuleName = await findNormalizedModuleNameAsync(obj);
if (normalizedModuleName) {
await captureModuleAsync(normalizedModuleName);
} else if (obj instanceof Function) {
// Serialize functions recursively, and store them in a closure property.
entry.function = await analyzeFunctionInfoAsync(obj, context, serialize, logInfo);
} else if (Output.isInstance(obj)) {
if (await isSecretOutput(obj)) {
context.containsSecrets = true;
}
entry.output = await createOutputEntryAsync(obj);
} else if (obj instanceof Promise) {
const val = await obj;
entry.promise = await getOrCreateEntryAsync(val, undefined, context, serialize, logInfo);
} else if (obj instanceof Array) {
// Recursively serialize elements of an array. Note: we use getOwnPropertyNames as the
// array may be sparse and we want to properly respect that when serializing.
entry.array = [];
for (const descriptor of await getOwnPropertyDescriptors(obj)) {
if (descriptor.name !== undefined && descriptor.name !== "length") {
entry.array[<any>descriptor.name] = await getOrCreateEntryAsync(
await getOwnPropertyAsync(obj, descriptor),
undefined,
context,
serialize,
logInfo,
);
}
}
// TODO(cyrusn): It feels weird that we're not examining any other descriptors of an
// array. For example, if someone put on a property with a symbolic name, we'd lose
// that here. Unlikely, but something we may need to handle in the future.
} else if (Object.prototype.toString.call(obj) === "[object Arguments]") {
// From: https://stackoverflow.com/questions/7656280/how-do-i-check-whether-an-object-is-an-arguments-object-in-javascript
entry.array = [];
for (const elem of obj) {
entry.array.push(await getOrCreateEntryAsync(elem, undefined, context, serialize, logInfo));
}
} else {
// For all other objects, serialize out the properties we've been asked to serialize
// out.
await serializeObjectAsync();
}
}
async function serializeObjectAsync() {
// Serialize the set of property names asked for. If we discover that any of them
// use this/super, then go and reserialize all the properties.
const serializeAll = await serializeObjectWorkerAsync(capturedObjectProperties || []);
if (serializeAll) {
await serializeObjectWorkerAsync([]);
}
}
// Returns 'true' if the caller (serializeObjectAsync) should call this again, but without any
// property filtering.
async function serializeObjectWorkerAsync(localCapturedPropertyChains: CapturedPropertyChain[]): Promise<boolean> {
entry.object = entry.object || { env: new Map() };
if (localCapturedPropertyChains.length === 0) {
await serializeAllObjectPropertiesAsync(entry.object);
return false;
} else {
return await serializeSomeObjectPropertiesAsync(entry.object, localCapturedPropertyChains);
}
}
// Serializes out all the properties of this object. Used when we can't prove that
// only a subset of properties are used on this object.
async function serializeAllObjectPropertiesAsync(object: ObjectInfo) {
// we wanted to capture everything (including the prototype chain)
const descriptors = await getOwnPropertyDescriptors(obj);
for (const descriptor of descriptors) {
const keyEntry = await getOrCreateEntryAsync(
getNameOrSymbol(descriptor),
undefined,
context,
serialize,
logInfo,
);
// We're about to recurse inside this object. In order to prevent infinite loops, put a
// dummy entry in the environment map. That way, if we hit this object again while
// recursing we won't try to generate this property.
//
// Note: we only stop recursing if we hit exactly our sentinel key (i.e. we're self
// recursive). We *do* want to recurse through the object again if we see it through
// non-recursive paths. That's because we might be hitting this object through one
// prop-name-path, but we created it the first time through another prop-name path.
//
// By processing the object again, we will add the different members we need.
if (object.env.has(keyEntry) && object.env.get(keyEntry) === undefined) {
continue;
}
object.env.set(keyEntry, <any>undefined);
const propertyInfo = await createPropertyInfoAsync(descriptor, context, serialize, logInfo);
const prop = await getOwnPropertyAsync(obj, descriptor);
const valEntry = await getOrCreateEntryAsync(prop, undefined, context, serialize, logInfo);
// Now, replace the dummy entry with the actual one we want.
object.env.set(keyEntry, { info: propertyInfo, entry: valEntry });
}
// If the object's __proto__ is not Object.prototype, then we have to capture what it
// actually is. On the other end, we'll use Object.create(deserializedProto) to set
// things up properly.
//
// We don't need to capture the prototype if the user is not capturing `this` either.
if (!object.proto) {
const proto = Object.getPrototypeOf(obj);
if (proto !== Object.prototype) {
object.proto = await getOrCreateEntryAsync(proto, undefined, context, serialize, logInfo);
}
}
}
// Serializes out only the subset of properties of this object that we have seen used
// and have recorded in localCapturedPropertyChains
async function serializeSomeObjectPropertiesAsync(
object: ObjectInfo,
localCapturedPropertyChains: CapturedPropertyChain[],
): Promise<boolean> {
// validate our invariants.
for (const chain of localCapturedPropertyChains) {
if (chain.infos.length === 0) {
throw new Error("Expected a non-empty chain.");
}
}
// we only want to capture a subset of properties. We can do this as long those
// properties don't somehow end up involving referencing "this" in an 'invoked'
// capacity (in which case we need to completely realize the object.
//
// this is slightly tricky as it's not obvious if a property is a getter/setter
// and this is implicitly invoked just by access it.
// Find the list of property names *directly* accessed off this object.
const propChainFirstNames = new Set(localCapturedPropertyChains.map((chain) => chain.infos[0].name));
// Now process each top level property name accessed off of this object in turn. For
// example, if we say "foo.bar.baz", "foo.bar.quux", "foo.ztesch", this would "bar" and
// "ztesch".
for (const propName of propChainFirstNames) {
// Get the named chains starting with this prop name. In the above example, if
// this was "bar", then we would get "[bar, baz]" and [bar, quux].
const propChains = localCapturedPropertyChains.filter((chain) => chain.infos[0].name === propName);
// Now, make an entry just for this name.
const keyEntry = await getOrCreateNameEntryAsync(propName, undefined, context, serialize, logInfo);
// We're about to recurse inside this object. In order to prevent infinite loops, put a
// dummy entry in the environment map. That way, if we hit this object again while
// recursing we won't try to generate this property.
//
// Note: we only stop recursing if we hit exactly our sentinel key (i.e. we're self
// recursive). We *do* want to recurse through the object again if we see it through
// non-recursive paths. That's because we might be hitting this object through one
// prop-name-path, but we created it the first time through another prop-name path.
//
// By processing the object again, we will add the different members we need.
if (object.env.has(keyEntry) && object.env.get(keyEntry) === undefined) {
continue;
}
object.env.set(keyEntry, <any>undefined);
const objPropValue = await getPropertyAsync(obj, propName);
const propertyInfo = await getPropertyInfoAsync(obj, propName);
if (!propertyInfo) {
if (objPropValue !== undefined) {
throw new Error("Could not find property info for real property on object: " + propName);
}
// User code referenced a property not actually on the object at all.
// So to properly represent that, we don't place any information about
// this property on the object.
object.env.delete(keyEntry);
} else {
// Determine what chained property names we're accessing off of this sub-property.
// if we have no sub property name chain, then indicate that with an empty array
// so that we capture the entire object.
//
// i.e.: if we started with a.b.c.d, and we've finally gotten to the point where
// we're serializing out the 'd' property, then we need to serialize it out fully
// since there are no more accesses off of it.
let nestedPropChains = propChains.map((chain) => ({ infos: chain.infos.slice(1) }));
if (nestedPropChains.some((chain) => chain.infos.length === 0)) {
nestedPropChains = [];
}
// Note: objPropValue can be undefined here. That's the case where the
// object does have the property, but the property is just set to the
// undefined value.
const valEntry = await getOrCreateEntryAsync(
objPropValue,
nestedPropChains,
context,
serialize,
logInfo,
);
const infos = propChains.map((chain) => chain.infos[0]);
if (propInfoUsesNonLexicalThis(infos, propertyInfo, valEntry)) {
// the referenced function captured `this`. Have to serialize out
// this entire object. Undo the work we did to just serialize out a
// few properties.
object.env.clear();
// Signal our caller to serialize the entire object.
return true;
}
// Now, replace the dummy entry with the actual one we want.
object.env.set(keyEntry, { info: propertyInfo, entry: valEntry });
}
}
return false;
}
function propInfoUsesNonLexicalThis(
capturedInfos: CapturedPropertyInfo[],
propertyInfo: PropertyInfo | undefined,
valEntry: Entry,
) {
if (capturedInfos.some((info) => info.invoked)) {
// If the property was invoked, then we have to check if that property ends
// up using this/super. if so, then we actually have to serialize out this
// object entirely.
if (usesNonLexicalThis(valEntry)) {
return true;
}
}
// if we're accessing a getter/setter, and that getter/setter uses
// `this`, then we need to serialize out this object entirely.
if (
usesNonLexicalThis(propertyInfo ? propertyInfo.get : undefined) ||
usesNonLexicalThis(propertyInfo ? propertyInfo.set : undefined)
) {
return true;
}
return false;
}
async function getPropertyInfoAsync(on: any, key: string | symbol): Promise<PropertyInfo | undefined> {
for (let current = on; current; current = Object.getPrototypeOf(current)) {
const desc = Object.getOwnPropertyDescriptor(current, key);
if (desc) {
const closurePropDescriptor = createClosurePropertyDescriptor(key, desc);
const propertyInfo = await createPropertyInfoAsync(closurePropDescriptor, context, serialize, logInfo);
return propertyInfo;
}
}
return undefined;
}
function usesNonLexicalThis(localEntry: Entry | undefined) {
return localEntry?.function?.usesNonLexicalThis;
}
async function captureModuleAsync(normalizedModuleName: string): Promise<void> {
// Splitting on "/" is safe to do as this module name is already in a normalized form.
const moduleParts = normalizedModuleName.split("/");
const nodeModulesSegment = "node_modules";
const nodeModulesSegmentIndex = moduleParts.findIndex((v) => v === nodeModulesSegment);
const isInNodeModules = nodeModulesSegmentIndex >= 0;
const isLocalModule = normalizedModuleName.startsWith(".") && !isInNodeModules;
if (hasTrueBooleanMember(obj, "deploymentOnlyModule") || isLocalModule) {
// Try to serialize deployment-time and local-modules by-value.
//
// A deployment-only modules can't ever be successfully 'required' on the 'inside'. But
// parts of it may be serializable on the inside (i.e. pulumi.Config). So just try to
// capture this as a value. If it fails, we will give the user a good message.
// Otherwise, it may succeed if the user is only using a small part of the API that is
// serializable (like pulumi.Config)
//
// Or this is a reference to a local module (i.e. starts with '.', but isn't in
// /node_modules/ somewhere). Always capture the local module as a value. We do this
// because capturing as a reference (i.e. 'require(...)') has the following problems:
//
// 1. 'require(...)' will not work at run-time, because the user's code will not be
// serialized in a way that can actually be require'd (i.e. it is not ) serialized
// into any sort of appropriate file/folder structure for those 'require's to work.
//
// 2. if we stop here and capture as a reference, then we won't actually see and walk
// the code that exists in those local modules (direct or transitive). So we won't
// actually generate the serialized code for the functions or values in that module.
// This will also lead to code that simply will not work at run-time.
await serializeObjectAsync();
} else {
// If the path goes into node_modules, strip off the node_modules part. This will help
// ensure that lookup of those modules will work on the cloud-side even if the module
// isn't in a relative node_modules directory. For example, this happens with aws-sdk.
// It ends up actually being in /var/runtime/node_modules inside aws lambda.
//
// This also helps ensure that modules that are 'yarn link'ed are found properly. The
// module path we have may be on some non-local path due to the linking, however this
// will ensure that the module-name we load is a simple path that can be found off the
// node_modules that we actually upload with our serialized functions.
entry.module = isInNodeModules
? getModuleFromPath(upath.join(...moduleParts.slice(nodeModulesSegmentIndex + 1)))
: normalizedModuleName;
}
}
async function createOutputEntryAsync(output: Output<any>): Promise<Entry> {
// We have an Output<T>. This is effectively just a wrapped value 'V' at deployment-time.
// We want to effectively generate a value post serialization effectively equivalent to `new
// SerializedOutput(V)`. It is tempting to want to just do the following:
//
// const val = await output.promise();
// return await getOrCreateEntryAsync(new SerializedOutput(val), undefined, context, serialize, logInfo);
//
// That seems like it would work. We're instantiating a SerializedOutput that will point at
// the underlying 'val' instance, and we're then serializing that entire object to be
// rehydrated on the other side.
//
// However, there's a subtlety here that we need to avoid. Specifically, in a world where
// we are never actually looking at real values, but are instead looking at 'Mirrors' of
// values, we never want to serialize something that actually points at a Mirror (like the
// SerializedOutput instance would). The reason for this is that if we then go to serialize
// the SerializedOutput, our Inspector APIs will hit the Mirror value and then get a Mirror
// for *that* Mirror. I.e. a Mirror<Mirror>. This is not what we want and will cause us to
// generate code that actually produces a Mirror object at cloud-runtime time instead of
// producing the real value.
//
// To avoid this, do something tricky. We first create an 'empty' SerializedObject. i.e.
//
// new SerializedOutput(undefined)
//
// We then serialize that instance (which we know must be an 'Object-Entry'). We then
// serialize out 'V', getting back the Entry for it. We then manually jam in that Entry
// into the Object-Entry for the SerializedOutput instance.
// First get the underlying value of the out, and create the environment entry for it.
const val = await output.promise();
const valEntry = await getOrCreateEntryAsync(val, undefined, context, serialize, logInfo);
// Now, create an empty-serialized output and create an environment entry for it. It
// will have a property 'value' that points to an Entry for 'undefined'.
const initializedEmptyOutput = new SerializedOutput(undefined);
const emptyOutputEntry = await getOrCreateEntryAsync(
initializedEmptyOutput,
undefined,
context,
serialize,
logInfo,
);
// validate that we created the right sort of entry. It should be an Object-Entry with
// a single property called 'value' in it.
if (!emptyOutputEntry.object) {
throw new Error("Did not get an 'object' in the entry for a serialized output");
}
const envEntries = [...emptyOutputEntry.object.env.entries()];
if (envEntries.length !== 1) {
throw new Error("Expected SerializedOutput object to only have one property: " + envEntries.length);
}
const [envEntry] = envEntries[0];
if (envEntry.json !== "value") {
throw new Error("Expected SerializedOutput object sole property to be called 'value': " + envEntry.json);
}
// Everything looked good. Replace the `"value" -> undefined-Entry` mapping in this entry
// with `"value" -> V-Entry`
emptyOutputEntry.object.env.set(envEntry, { entry: valEntry });
return emptyOutputEntry;
}
}
/**
* Returns true if this is a constructor derived from a `noCapture` constructor.
* If so, we don't want to emit it. We would be unable to actually hook up the
* `super()` call as one of the base constructors was set to not be captured.
*/
function isDerivedNoCaptureConstructor(func: Function): boolean {
for (let current: any = func; current; current = Object.getPrototypeOf(current)) {
if (hasTrueBooleanMember(current, "doNotCapture")) {
return true;
}
}
return false;
}
let builtInModules: Promise<Map<any, string>> | undefined;
function getBuiltInModules(): Promise<Map<any, string>> {
if (!builtInModules) {
builtInModules = computeBuiltInModules();
}
return builtInModules;
async function computeBuiltInModules() {
// These modules are built-in to Node.js, and are available via `require(...)`
// but are not stored in the `require.cache`. They are guaranteed to be
// available at the unqualified names listed below.
const excludes = [
"punycode", // deprecated in documentation since 7.0, logs a warning in 21.0
"sys", // deprecated since 1.0
"wasi", // experimental
];
const builtInModuleNames = nodeBuiltinModules.filter(
(name) => !name.startsWith("_") && !excludes.includes(name),
);
const map = new Map<any, string>();
for (const name of builtInModuleNames) {
map.set(require(name), name);
}
return map;
}
}
/**
* Attempts to find a global name bound to the object, which can be used as a
* stable reference across serialization. For built-in modules (i.e. `os`,
* `fs`, etc.) this will return that exact name of the module. Otherwise, this
* will return the relative path to the module from the current working
* directory of the process. This will normally be something of the form
* `./node_modules/<package_name>...`
*
* This function will also always return modules in a normalized form (i.e. all path components will
* be `/`).
*/
async function findNormalizedModuleNameAsync(obj: any): Promise<string | undefined> {
// First, check the built-in modules
const modules = await getBuiltInModules();
const key = modules.get(obj);
if (key) {
return key;
}
// Next, check the Node module require cache, which will store cached values
// of all non-built-in Node modules loaded by the program so far. _Note_: We
// don't pre-compute this because the require cache will get populated
// dynamically during execution.
for (const path of Object.keys(require.cache)) {
const c = require.cache[path];
if (c !== undefined && c.exports === obj) {
// Rewrite the path to be a local module reference relative to the current working
// directory.
const modPath = upath.relative(process.cwd(), path);
return "./" + modPath;
}
}
// Else, return that no global name is available for this object.
return undefined;
}
function createClosurePropertyDescriptor(
nameOrSymbol: string | symbol,
descriptor: PropertyDescriptor,
): ClosurePropertyDescriptor {
if (nameOrSymbol === undefined) {
throw new Error("Was not given a name or symbol");
}
const copy: ClosurePropertyDescriptor = { ...descriptor };
if (typeof nameOrSymbol === "string") {
copy.name = nameOrSymbol;
} else {
copy.symbol = nameOrSymbol;
}
return copy;
}
async function getOwnPropertyDescriptors(obj: any): Promise<ClosurePropertyDescriptor[]> {
const result: ClosurePropertyDescriptor[] = [];
for (const name of Object.getOwnPropertyNames(obj)) {
if (name === "__proto__") {
// don't return prototypes here. If someone wants one, they should call
// Object.getPrototypeOf. Note: this is the standard behavior of
// Object.getOwnPropertyNames. However, the Inspector API returns these, and we want to
// filter them out.
continue;
}
const descriptor = Object.getOwnPropertyDescriptor(obj, name);
if (!descriptor) {
throw new Error(`Could not get descriptor for ${name} on: ${JSON.stringify(obj)}`);
}
result.push(createClosurePropertyDescriptor(name, descriptor));
}
for (const symbol of Object.getOwnPropertySymbols(obj)) {
const descriptor = Object.getOwnPropertyDescriptor(obj, symbol);
if (!descriptor) {
throw new Error(`Could not get descriptor for symbol ${symbol.toString()} on: ${JSON.stringify(obj)}`);
}
result.push(createClosurePropertyDescriptor(symbol, descriptor));
}
return result;
}
async function getOwnPropertyAsync(obj: any, descriptor: ClosurePropertyDescriptor): Promise<any> {
return descriptor.get || descriptor.set ? undefined : obj[getNameOrSymbol(descriptor)];
}
async function getPropertyAsync(obj: any, name: string): Promise<any> {
return obj[name];
}
function getNameOrSymbol(descriptor: ClosurePropertyDescriptor): symbol | string {
if (descriptor.symbol === undefined && descriptor.name === undefined) {
throw new Error("Descriptor didn't have symbol or name: " + JSON.stringify(descriptor));
}
return descriptor.symbol || descriptor.name!;
}