pulumi/pkg/codegen/hcl2/model/expression.go

1677 lines
46 KiB
Go

// Copyright 2016-2020, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"io"
"math/big"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/codegen/hcl2/syntax"
"github.com/zclconf/go-cty/cty"
)
// Expression represents a semantically-analyzed HCL2 expression.
type Expression interface {
printable
// SyntaxNode returns the hclsyntax.Node associated with the expression.
SyntaxNode() hclsyntax.Node
// NodeTokens returns the syntax.Tokens associated with the expression.
NodeTokens() syntax.NodeTokens
// GetLeadingTrivia returns the leading trivia associated with the expression.
GetLeadingTrivia() syntax.TriviaList
// SetLeadingTrivia sets the leading trivia associated with the expression.
SetLeadingTrivia(syntax.TriviaList)
// GetTrailingTrivia returns the trailing trivia associated with the expression.
GetTrailingTrivia() syntax.TriviaList
// SetTrailingTrivia sets the trailing trivia associated with the expression.
SetTrailingTrivia(syntax.TriviaList)
// Type returns the type of the expression.
Type() Type
isExpression()
}
// AnonymousFunctionExpression represents a semantically-analyzed anonymous function expression.
//
// These expressions are not the result of semantically analyzing syntax nodes. Instead, they may be synthesized by
// transforms over the IR for a program (e.g. the Apply transform).
type AnonymousFunctionExpression struct {
// The signature for the anonymous function.
Signature StaticFunctionSignature
// The parameter definitions for the anonymous function.
Parameters []*Variable
// The body of the anonymous function.
Body Expression
}
// SyntaxNode returns the syntax node associated with the body of the anonymous function.
func (x *AnonymousFunctionExpression) SyntaxNode() hclsyntax.Node {
return x.Body.SyntaxNode()
}
// NodeTokens returns the tokens associated with the body of the anonymous function.
func (x *AnonymousFunctionExpression) NodeTokens() syntax.NodeTokens {
return x.Body.NodeTokens()
}
// Type returns the type of the anonymous function expression.
//
// TODO: currently this returns the any type. Instead, it should return a function type.
func (x *AnonymousFunctionExpression) Type() Type {
return DynamicType
}
func (x *AnonymousFunctionExpression) hasLeadingTrivia() bool {
return x.Body.hasLeadingTrivia()
}
func (x *AnonymousFunctionExpression) hasTrailingTrivia() bool {
return x.Body.hasTrailingTrivia()
}
func (x *AnonymousFunctionExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Body.GetLeadingTrivia()
}
func (x *AnonymousFunctionExpression) SetLeadingTrivia(t syntax.TriviaList) {
x.Body.SetLeadingTrivia(t)
}
func (x *AnonymousFunctionExpression) GetTrailingTrivia() syntax.TriviaList {
return x.Body.GetTrailingTrivia()
}
func (x *AnonymousFunctionExpression) SetTrailingTrivia(t syntax.TriviaList) {
x.Body.SetTrailingTrivia(t)
}
func (x *AnonymousFunctionExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *AnonymousFunctionExpression) print(w io.Writer, p *printer) {
// Print a call to eval.
p.fprintf(w, "eval(")
// Print the parameter names.
for _, v := range x.Parameters {
p.fprintf(w, "%v, ", v.Name)
}
// Print the body and closing paren.
//
// TODO(pdg): pull leading and trailing trivia out and prepend/append to the overall result
p.fprintf(w, "%v)", x.Body)
}
func (*AnonymousFunctionExpression) isExpression() {}
// BinaryOpExpression represents a semantically-analyzed binary operation.
type BinaryOpExpression struct {
// The syntax node associated with the binary operation.
Syntax *hclsyntax.BinaryOpExpr
// The tokens associated with the expression, if any.
Tokens *syntax.BinaryOpTokens
// The left-hand operand of the operation.
LeftOperand Expression
// The operation.
Operation *hclsyntax.Operation
// The right-hand operand of the operation.
RightOperand Expression
exprType Type
}
// SyntaxNode returns the syntax node associated with the binary operation.
func (x *BinaryOpExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the binary operation.
func (x *BinaryOpExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
// Type returns the type of the binary operation.
func (x *BinaryOpExpression) Type() Type {
return x.exprType
}
func (x *BinaryOpExpression) hasLeadingTrivia() bool {
return x.LeftOperand.hasLeadingTrivia()
}
func (x *BinaryOpExpression) hasTrailingTrivia() bool {
return x.RightOperand.hasTrailingTrivia()
}
func (x *BinaryOpExpression) GetLeadingTrivia() syntax.TriviaList {
return x.LeftOperand.GetLeadingTrivia()
}
func (x *BinaryOpExpression) SetLeadingTrivia(t syntax.TriviaList) {
x.LeftOperand.SetLeadingTrivia(t)
}
func (x *BinaryOpExpression) GetTrailingTrivia() syntax.TriviaList {
return x.RightOperand.GetTrailingTrivia()
}
func (x *BinaryOpExpression) SetTrailingTrivia(t syntax.TriviaList) {
x.RightOperand.SetTrailingTrivia(t)
}
func (x *BinaryOpExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *BinaryOpExpression) print(w io.Writer, p *printer) {
p.fprintf(w, "%v% v% v",
x.LeftOperand,
x.Tokens.GetOperator().Or(syntax.OperationTokenType(x.Operation)),
x.RightOperand)
}
func (*BinaryOpExpression) isExpression() {}
// ConditionalExpression represents a semantically-analzed conditional expression (i.e.
// <condition> '?' <true> ':' <false>).
type ConditionalExpression struct {
// The syntax node associated with the conditional expression.
Syntax *hclsyntax.ConditionalExpr
// The tokens associated with the expression, if any.
Tokens syntax.NodeTokens
// The condition.
Condition Expression
// The result of the expression if the condition evaluates to true.
TrueResult Expression
// The result of the expression if the condition evaluates to false.
FalseResult Expression
exprType Type
}
// SyntaxNode returns the syntax node associated with the conditional expression.
func (x *ConditionalExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the conditional expression.
func (x *ConditionalExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
// Type returns the type of the conditional expression.
func (x *ConditionalExpression) Type() Type {
return x.exprType
}
func (x *ConditionalExpression) hasLeadingTrivia() bool {
if tokens, ok := x.Tokens.(*syntax.TemplateConditionalTokens); ok {
return len(tokens.OpenIf.LeadingTrivia) != 0
}
return x.Condition.hasLeadingTrivia()
}
func (x *ConditionalExpression) hasTrailingTrivia() bool {
if tokens, ok := x.Tokens.(*syntax.TemplateConditionalTokens); ok {
return len(tokens.CloseEndif.TrailingTrivia) != 0
}
return x.FalseResult.hasTrailingTrivia()
}
func (x *ConditionalExpression) GetLeadingTrivia() syntax.TriviaList {
if tokens, ok := x.Tokens.(*syntax.TemplateConditionalTokens); ok {
return tokens.OpenIf.LeadingTrivia
}
return x.Condition.GetLeadingTrivia()
}
func (x *ConditionalExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewConditionalTokens()
}
if tokens, ok := x.Tokens.(*syntax.TemplateConditionalTokens); ok {
tokens.OpenIf.LeadingTrivia = t
return
}
x.Condition.SetLeadingTrivia(t)
}
func (x *ConditionalExpression) GetTrailingTrivia() syntax.TriviaList {
if tokens, ok := x.Tokens.(*syntax.TemplateConditionalTokens); ok {
return tokens.CloseEndif.TrailingTrivia
}
return x.FalseResult.GetTrailingTrivia()
}
func (x *ConditionalExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewConditionalTokens()
}
if tokens, ok := x.Tokens.(*syntax.TemplateConditionalTokens); ok {
tokens.CloseEndif.TrailingTrivia = t
return
}
x.FalseResult.SetTrailingTrivia(t)
}
func (x *ConditionalExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *ConditionalExpression) print(w io.Writer, p *printer) {
tokens := x.Tokens
if tokens == nil {
tokens = &syntax.ConditionalTokens{}
}
switch tokens := tokens.(type) {
case *syntax.ConditionalTokens:
p.fprintf(w, "%v% v% v% v% v",
x.Condition,
tokens.QuestionMark.Or(hclsyntax.TokenQuestion),
x.TrueResult,
tokens.Colon.Or(hclsyntax.TokenColon),
x.FalseResult)
case *syntax.TemplateConditionalTokens:
p.fprintf(w, "%v%v% v%v%v",
tokens.OpenIf.Or(hclsyntax.TokenTemplateControl),
tokens.If.Or(hclsyntax.TokenIdent, "if"),
x.Condition,
tokens.CloseIf.Or(hclsyntax.TokenTemplateSeqEnd),
x.TrueResult)
if tokens.Else != nil {
p.fprintf(w, "%v%v%v%v",
tokens.OpenElse.Or(hclsyntax.TokenTemplateControl),
tokens.Else.Or(hclsyntax.TokenIdent, "else"),
tokens.CloseElse.Or(hclsyntax.TokenTemplateSeqEnd),
x.FalseResult)
}
p.fprintf(w, "%v%v%v",
tokens.OpenEndif.Or(hclsyntax.TokenTemplateControl),
tokens.Endif.Or(hclsyntax.TokenIdent, "endif"),
tokens.CloseEndif.Or(hclsyntax.TokenTemplateSeqEnd))
}
}
func (*ConditionalExpression) isExpression() {}
// ErrorExpression represents an expression that could not be bound due to an error.
type ErrorExpression struct {
// The syntax node associated with the error, if any.
Syntax hclsyntax.Node
// The tokens associated with the error.
Tokens syntax.NodeTokens
// The message associated with the error.
Message string
exprType Type
}
// SyntaxNode returns the syntax node associated with the error expression.
func (x *ErrorExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the error expression.
func (x *ErrorExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
// Type returns the type of the error expression.
func (x *ErrorExpression) Type() Type {
return x.exprType
}
func (x *ErrorExpression) hasLeadingTrivia() bool {
return false
}
func (x *ErrorExpression) hasTrailingTrivia() bool {
return false
}
func (x *ErrorExpression) GetLeadingTrivia() syntax.TriviaList {
return nil
}
func (x *ErrorExpression) SetLeadingTrivia(t syntax.TriviaList) {
}
func (x *ErrorExpression) GetTrailingTrivia() syntax.TriviaList {
return nil
}
func (x *ErrorExpression) SetTrailingTrivia(t syntax.TriviaList) {
}
func (x *ErrorExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *ErrorExpression) print(w io.Writer, p *printer) {
p.fprintf(w, "error(%q)", x.Message)
}
func (*ErrorExpression) isExpression() {}
// ForExpression represents a semantically-analyzed for expression.
type ForExpression struct {
// The syntax node associated with the for expression.
Syntax *hclsyntax.ForExpr
// The tokens associated with the expression, if any.
Tokens syntax.NodeTokens
// The key variable, if any.
KeyVariable *Variable
// The value variable.
ValueVariable *Variable
// The collection being iterated.
Collection Expression
// The expression that generates the keys of the result, if any. If this field is non-nil, the result is a map.
Key Expression
// The expression that generates the values of the result.
Value Expression
// The condition that filters the items of the result, if any.
Condition Expression
// True if the value expression is being grouped.
Group bool
exprType Type
}
// SyntaxNode returns the syntax node associated with the for expression.
func (x *ForExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the for expression.
func (x *ForExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
// Type returns the type of the for expression.
func (x *ForExpression) Type() Type {
return x.exprType
}
func (x *ForExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *ForExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *ForExpression) GetLeadingTrivia() syntax.TriviaList {
switch tokens := x.Tokens.(type) {
case *syntax.ForTokens:
return tokens.Open.LeadingTrivia
case *syntax.TemplateForTokens:
return tokens.OpenFor.LeadingTrivia
default:
return nil
}
}
func (x *ForExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
keyVariable := ""
if x.KeyVariable != nil {
keyVariable = x.KeyVariable.Name
}
x.Tokens = syntax.NewForTokens(keyVariable, x.ValueVariable.Name, x.Key != nil, x.Group, x.Condition != nil)
}
switch tokens := x.Tokens.(type) {
case *syntax.ForTokens:
tokens.Open.LeadingTrivia = t
case *syntax.TemplateForTokens:
tokens.OpenFor.LeadingTrivia = t
}
}
func (x *ForExpression) GetTrailingTrivia() syntax.TriviaList {
switch tokens := x.Tokens.(type) {
case *syntax.ForTokens:
return tokens.Close.TrailingTrivia
case *syntax.TemplateForTokens:
return tokens.CloseEndfor.TrailingTrivia
default:
return nil
}
}
func (x *ForExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
keyVariable := ""
if x.KeyVariable != nil {
keyVariable = x.KeyVariable.Name
}
x.Tokens = syntax.NewForTokens(keyVariable, x.ValueVariable.Name, x.Key != nil, x.Group, x.Condition != nil)
}
switch tokens := x.Tokens.(type) {
case *syntax.ForTokens:
tokens.Close.TrailingTrivia = t
case *syntax.TemplateForTokens:
tokens.CloseEndfor.TrailingTrivia = t
}
}
func (x *ForExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *ForExpression) print(w io.Writer, p *printer) {
tokens := x.Tokens
if tokens == nil {
tokens = &syntax.ForTokens{}
}
switch tokens := tokens.(type) {
case *syntax.ForTokens:
open, close := hclsyntax.TokenOBrack, hclsyntax.TokenCBrack
if x.Key != nil {
open, close = hclsyntax.TokenOBrace, hclsyntax.TokenCBrace
}
// Print the opening rune and the for token.
p.fprintf(w, "%v%v",
tokens.Open.Or(open),
tokens.For.Or(hclsyntax.TokenIdent, "for"))
// Print the key variable, if any.
if x.KeyVariable != nil {
p.fprintf(w, "% v%v",
tokens.Key.Or(hclsyntax.TokenIdent, x.KeyVariable.Name),
tokens.Comma.Or(hclsyntax.TokenComma))
}
// Print the value variable, the in token, the collection expression, and the colon.
p.fprintf(w, "% v% v% v%v",
tokens.Value.Or(hclsyntax.TokenIdent, x.ValueVariable.Name),
tokens.In.Or(hclsyntax.TokenIdent, "in"),
x.Collection,
tokens.Colon.Or(hclsyntax.TokenColon))
// Print the key expression and arrow token, if any.
if x.Key != nil {
p.fprintf(w, "% v% v",
x.Key,
tokens.Arrow.Or(hclsyntax.TokenFatArrow))
}
// Print the value expression.
p.fprintf(w, "% v", x.Value)
// Print the group token, if any.
if x.Group {
p.fprintf(w, "%v", tokens.Group.Or(hclsyntax.TokenEllipsis))
}
// Print the if token and the condition, if any.
if x.Condition != nil {
p.fprintf(w, "% v% v",
tokens.If.Or(hclsyntax.TokenIdent, "if"),
x.Condition)
}
// Print the closing rune.
p.fprintf(w, "%v", tokens.Close.Or(close))
case *syntax.TemplateForTokens:
// Print the opening sequence.
p.fprintf(w, "%v%v",
tokens.OpenFor.Or(hclsyntax.TokenTemplateControl),
tokens.For.Or(hclsyntax.TokenIdent, "for"))
// Print the key variable, if any.
if x.KeyVariable != nil {
p.fprintf(w, "% v%v",
tokens.Key.Or(hclsyntax.TokenIdent, x.KeyVariable.Name),
tokens.Comma.Or(hclsyntax.TokenComma))
}
// Print the value variable, the in token, the collection expression, the control sequence terminator, the
// value expression, and the closing sequence.
p.fprintf(w, "% v% v% v%v%v%v%v%v",
tokens.Value.Or(hclsyntax.TokenIdent, x.ValueVariable.Name),
tokens.In.Or(hclsyntax.TokenIdent, "in"),
x.Collection,
tokens.CloseFor.Or(hclsyntax.TokenTemplateSeqEnd),
x.Value,
tokens.OpenEndfor.Or(hclsyntax.TokenTemplateControl),
tokens.Endfor.Or(hclsyntax.TokenIdent, "endfor"),
tokens.CloseEndfor.Or(hclsyntax.TokenTemplateSeqEnd))
}
}
func (*ForExpression) isExpression() {}
// FunctionCallExpression represents a semantically-analyzed function call expression.
type FunctionCallExpression struct {
// The syntax node associated with the function call expression.
Syntax *hclsyntax.FunctionCallExpr
// The tokens associated with the expression, if any.
Tokens *syntax.FunctionCallTokens
// The name of the called function.
Name string
// The signature of the called function.
Signature StaticFunctionSignature
// The arguments to the function call.
Args []Expression
}
// SyntaxNode returns the syntax node associated with the function call expression.
func (x *FunctionCallExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the function call expression.
func (x *FunctionCallExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *FunctionCallExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *FunctionCallExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *FunctionCallExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tokens.GetName().LeadingTrivia
}
func (x *FunctionCallExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewFunctionCallTokens(x.Name, len(x.Args))
}
x.Tokens.Name.LeadingTrivia = t
}
func (x *FunctionCallExpression) GetTrailingTrivia() syntax.TriviaList {
return x.Tokens.GetCloseParen().TrailingTrivia
}
func (x *FunctionCallExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewFunctionCallTokens(x.Name, len(x.Args))
}
x.Tokens.CloseParen.TrailingTrivia = t
}
func (x *FunctionCallExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *FunctionCallExpression) print(w io.Writer, p *printer) {
// Print the name and opening parenthesis.
p.fprintf(w, "%v%v",
x.Tokens.GetName().Or(hclsyntax.TokenIdent, x.Name),
x.Tokens.GetOpenParen().Or(hclsyntax.TokenOParen))
// Print each argument and its comma.
commas := x.Tokens.GetCommas()
for i, arg := range x.Args {
if i == 0 {
p.fprintf(w, "%v", arg)
} else {
p.fprintf(w, "% v", arg)
}
if i < len(x.Args)-1 {
var comma syntax.Token
if i < len(commas) {
comma = commas[i]
}
p.fprintf(w, "%v", comma.Or(hclsyntax.TokenComma))
}
}
// If there were commas left over, print the trivia for each.
if len(x.Args)-1 <= len(commas) {
for _, comma := range commas[len(x.Args)-1:] {
p.fprintf(w, "%v", comma.AllTrivia().CollapseWhitespace())
}
}
// Print the closing parenthesis.
p.fprintf(w, "%v", x.Tokens.GetCloseParen().Or(hclsyntax.TokenCParen))
}
// Type returns the type of the function call expression.
func (x *FunctionCallExpression) Type() Type {
return x.Signature.ReturnType
}
func (*FunctionCallExpression) isExpression() {}
// IndexExpression represents a semantically-analyzed index expression.
type IndexExpression struct {
// The syntax node associated with the index expression.
Syntax *hclsyntax.IndexExpr
// The tokens associated with the expression, if any.
Tokens *syntax.IndexTokens
// The collection being indexed.
Collection Expression
// The index key.
Key Expression
exprType Type
}
// SyntaxNode returns the syntax node associated with the index expression.
func (x *IndexExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the index expression.
func (x *IndexExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *IndexExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *IndexExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *IndexExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tokens.GetOpenBracket().LeadingTrivia
}
func (x *IndexExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewIndexTokens()
}
x.Tokens.OpenBracket.LeadingTrivia = t
}
func (x *IndexExpression) GetTrailingTrivia() syntax.TriviaList {
return x.Tokens.GetCloseBracket().TrailingTrivia
}
func (x *IndexExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewIndexTokens()
}
x.Tokens.CloseBracket.TrailingTrivia = t
}
func (x *IndexExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *IndexExpression) print(w io.Writer, p *printer) {
p.fprintf(w, "%v%v%v%v",
x.Collection,
x.Tokens.GetOpenBracket().Or(hclsyntax.TokenOBrack),
x.Key,
x.Tokens.GetCloseBracket().Or(hclsyntax.TokenCBrack))
}
// Type returns the type of the index expression.
func (x *IndexExpression) Type() Type {
return x.exprType
}
func (*IndexExpression) isExpression() {}
func literalText(value cty.Value, rawBytes []byte) string {
if len(rawBytes) > 0 {
parsed, diags := hclsyntax.ParseExpression(rawBytes, "", hcl.Pos{})
if !diags.HasErrors() {
if lit, ok := parsed.(*hclsyntax.LiteralValueExpr); ok && lit.Val.RawEquals(value) {
return string(rawBytes)
}
}
}
switch value.Type() {
case cty.Bool:
if value.True() {
return "true"
}
return "false"
case cty.Number:
bf := value.AsBigFloat()
i, acc := bf.Int64()
if acc == big.Exact {
return fmt.Sprintf("%v", i)
}
d, _ := bf.Float64()
return fmt.Sprintf("%g", d)
case cty.String:
return value.AsString()
default:
panic(fmt.Errorf("unexpected literal type %v", value.Type().FriendlyName()))
}
}
// LiteralValueExpression represents a semantically-analyzed literal value expression.
type LiteralValueExpression struct {
// The syntax node associated with the literal value expression.
Syntax *hclsyntax.LiteralValueExpr
// The tokens associated with the expression, if any.
Tokens *syntax.LiteralValueTokens
// The value of the expression.
Value cty.Value
exprType Type
}
// SyntaxNode returns the syntax node associated with the literal value expression.
func (x *LiteralValueExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the literal value expression.
func (x *LiteralValueExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *LiteralValueExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *LiteralValueExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func newLiteralValueTokens(value cty.Value) *syntax.LiteralValueTokens {
text, typ := literalText(value, nil), hclsyntax.TokenIdent
switch value.Type() {
case cty.Bool:
// OK
case cty.Number:
typ = hclsyntax.TokenNumberLit
case cty.String:
typ = hclsyntax.TokenStringLit
default:
panic(fmt.Errorf("unexpected literal type %v", value.Type().FriendlyName()))
}
return syntax.NewLiteralValueTokens(syntax.Token{
Raw: hclsyntax.Token{
Type: typ,
Bytes: []byte(text),
},
})
}
func (x *LiteralValueExpression) GetLeadingTrivia() syntax.TriviaList {
if v := x.Tokens.GetValue(); len(v) > 0 {
return v[0].LeadingTrivia
}
return nil
}
func (x *LiteralValueExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = newLiteralValueTokens(x.Value)
}
x.Tokens.Value[0].LeadingTrivia = t
}
func (x *LiteralValueExpression) GetTrailingTrivia() syntax.TriviaList {
if v := x.Tokens.GetValue(); len(v) > 0 {
return v[len(v)-1].TrailingTrivia
}
return nil
}
func (x *LiteralValueExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = newLiteralValueTokens(x.Value)
}
x.Tokens.Value[len(x.Tokens.Value)-1].TrailingTrivia = t
}
func (x *LiteralValueExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *LiteralValueExpression) print(w io.Writer, p *printer) {
// Literals are... odd. They may be composed of multiple tokens, but those tokens should never contain interior
// trivia.
var leading, trailing syntax.TriviaList
var rawBytes []byte
if toks := x.Tokens.GetValue(); len(toks) > 0 {
leading, trailing = toks[0].LeadingTrivia, toks[len(toks)-1].TrailingTrivia
for _, t := range toks {
rawBytes = append(rawBytes, t.Raw.Bytes...)
}
}
p.fprintf(w, "%v%v%v", leading, literalText(x.Value, rawBytes), trailing)
}
// Type returns the type of the literal value expression.
func (x *LiteralValueExpression) Type() Type {
return x.exprType
}
func (*LiteralValueExpression) isExpression() {}
// ObjectConsItem records a key-value pair that is part of object construction expression.
type ObjectConsItem struct {
// The key.
Key Expression
// The value.
Value Expression
}
// ObjectConsExpression represents a semantically-analyzed object construction expression.
type ObjectConsExpression struct {
// The syntax node associated with the object construction expression.
Syntax *hclsyntax.ObjectConsExpr
// The tokens associated with the expression, if any.
Tokens *syntax.ObjectConsTokens
// The items that comprise the object construction expression.
Items []ObjectConsItem
exprType Type
}
// SyntaxNode returns the syntax node associated with the object construction expression.
func (x *ObjectConsExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the object construction expression.
func (x *ObjectConsExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *ObjectConsExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *ObjectConsExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *ObjectConsExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tokens.GetOpenBrace().LeadingTrivia
}
func (x *ObjectConsExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewObjectConsTokens(len(x.Items))
}
x.Tokens.OpenBrace.LeadingTrivia = t
}
func (x *ObjectConsExpression) GetTrailingTrivia() syntax.TriviaList {
return x.Tokens.GetCloseBrace().TrailingTrivia
}
func (x *ObjectConsExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewObjectConsTokens(len(x.Items))
}
x.Tokens.CloseBrace.TrailingTrivia = t
}
func (x *ObjectConsExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *ObjectConsExpression) print(w io.Writer, p *printer) {
// Print the opening brace.
p.fprintf(w, "%v", x.Tokens.GetOpenBrace().Or(hclsyntax.TokenOBrace))
// Print the items.
p.indented(func() {
items := x.Tokens.GetItems()
for i, item := range x.Items {
var equals syntax.Token
var comma *syntax.Token
if i < len(items) {
equals, comma = items[i].Equals, items[i].Comma
}
if !item.Key.hasLeadingTrivia() {
p.fprintf(w, "\n%s", p.indent)
}
p.fprintf(w, "%v% v% v",
item.Key,
equals.Or(hclsyntax.TokenEqual),
item.Value)
if comma != nil {
p.fprintf(w, "%v", comma.Or(hclsyntax.TokenComma))
}
}
if len(x.Items) < len(items) {
for _, item := range items[len(x.Items):] {
p.fprintf(w, "%v", item.Equals.AllTrivia().CollapseWhitespace())
if item.Comma != nil {
p.fprintf(w, "%v", item.Comma.AllTrivia().CollapseWhitespace())
}
}
}
})
if x.Tokens != nil {
p.fprintf(w, "%v", x.Tokens.CloseBrace.Or(hclsyntax.TokenCBrace))
} else {
p.fprintf(w, "\n%s}", p.indent)
}
}
// Type returns the type of the object construction expression.
func (x *ObjectConsExpression) Type() Type {
return x.exprType
}
func (*ObjectConsExpression) isExpression() {}
func newTraverserTokens(traverser hcl.Traverser) syntax.TraverserTokens {
switch traverser := traverser.(type) {
case hcl.TraverseAttr:
return syntax.NewDotTraverserTokens(traverser.Name)
case hcl.TraverseIndex:
return syntax.NewBracketTraverserTokens(literalText(traverser.Key, nil))
default:
panic(fmt.Errorf("unexpected traverser of type %T", traverser))
}
}
func getTraverserTrivia(tokens syntax.TraverserTokens) (syntax.TriviaList, syntax.TriviaList) {
switch tokens := tokens.(type) {
case *syntax.DotTraverserTokens:
return tokens.GetDot().LeadingTrivia, tokens.GetIndex().TrailingTrivia
case *syntax.BracketTraverserTokens:
return tokens.GetOpenBracket().LeadingTrivia, tokens.GetCloseBracket().TrailingTrivia
}
return nil, nil
}
func setTraverserTrailingTrivia(tokens syntax.TraverserTokens, t syntax.TriviaList) {
switch tokens := tokens.(type) {
case *syntax.DotTraverserTokens:
tokens.Index.TrailingTrivia = t
case *syntax.BracketTraverserTokens:
tokens.CloseBracket.TrailingTrivia = t
default:
panic(fmt.Errorf("unexpected traverser of type %T", tokens))
}
}
func printTraverser(w io.Writer, p *printer, t hcl.Traverser, tokens syntax.TraverserTokens) {
var index string
switch t := t.(type) {
case hcl.TraverseAttr:
index = t.Name
if tokens == nil {
tokens = &syntax.DotTraverserTokens{}
}
case hcl.TraverseIndex:
var rawBytes []byte
if tokens == nil {
tokens = &syntax.BracketTraverserTokens{}
} else {
rawBytes = tokens.GetIndex().Raw.Bytes
}
index = literalText(t.Key, rawBytes)
default:
panic(fmt.Errorf("unexpected traverser of type %T", t))
}
switch tokens := tokens.(type) {
case *syntax.DotTraverserTokens:
p.fprintf(w, "%v%v",
tokens.Dot.Or(hclsyntax.TokenDot),
tokens.Index.Or(hclsyntax.TokenIdent, index))
case *syntax.BracketTraverserTokens:
p.fprintf(w, "%v%v%v",
tokens.OpenBracket.Or(hclsyntax.TokenOBrack),
tokens.Index.Or(hclsyntax.TokenIdent, index),
tokens.CloseBracket.Or(hclsyntax.TokenCBrack))
default:
panic(fmt.Errorf("unexpected traverser tokens of type %T", tokens))
}
}
func printRelativeTraversal(w io.Writer, p *printer, traversal hcl.Traversal, tokens []syntax.TraverserTokens) {
for i, traverser := range traversal {
// Fetch the traversal tokens.
var traverserTokens syntax.TraverserTokens
if i < len(tokens) {
traverserTokens = tokens[i]
}
printTraverser(w, p, traverser, traverserTokens)
}
// Print any remaining trivia.
if len(traversal) < len(tokens) {
for _, tokens := range tokens[len(traversal):] {
var trivia syntax.TriviaList
switch tokens := tokens.(type) {
case *syntax.DotTraverserTokens:
trivia = tokens.Dot.LeadingTrivia
trivia = append(trivia, tokens.Dot.TrailingTrivia...)
trivia = append(trivia, tokens.Index.LeadingTrivia...)
trivia = append(trivia, tokens.Index.TrailingTrivia...)
case *syntax.BracketTraverserTokens:
trivia = tokens.OpenBracket.LeadingTrivia
trivia = append(trivia, tokens.OpenBracket.TrailingTrivia...)
trivia = append(trivia, tokens.Index.LeadingTrivia...)
trivia = append(trivia, tokens.Index.TrailingTrivia...)
trivia = append(trivia, tokens.CloseBracket.LeadingTrivia...)
trivia = append(trivia, tokens.CloseBracket.TrailingTrivia...)
}
p.fprintf(w, "%v", trivia)
}
}
}
// RelativeTraversalExpression represents a semantically-analyzed relative traversal expression.
type RelativeTraversalExpression struct {
// The syntax node associated with the relative traversal expression.
Syntax *hclsyntax.RelativeTraversalExpr
// The tokens associated with the expression, if any.
Tokens *syntax.RelativeTraversalTokens
// The expression that computes the value being traversed.
Source Expression
// The traversal's parts.
Parts []Traversable
// The traversers.
Traversal hcl.Traversal
}
// SyntaxNode returns the syntax node associated with the relative traversal expression.
func (x *RelativeTraversalExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the relative traversal expression.
func (x *RelativeTraversalExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *RelativeTraversalExpression) hasLeadingTrivia() bool {
return x.Source.hasLeadingTrivia()
}
func (x *RelativeTraversalExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *RelativeTraversalExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Source.GetLeadingTrivia()
}
func (x *RelativeTraversalExpression) SetLeadingTrivia(t syntax.TriviaList) {
x.Source.SetLeadingTrivia(t)
}
func (x *RelativeTraversalExpression) GetTrailingTrivia() syntax.TriviaList {
if traversal := x.Tokens.GetTraversal(); len(traversal) > 0 {
_, trailingTrivia := getTraverserTrivia(traversal[len(traversal)-1])
return trailingTrivia
}
return x.Source.GetTrailingTrivia()
}
func (x *RelativeTraversalExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
traversers := make([]syntax.TraverserTokens, len(x.Traversal))
for i := 0; i < len(traversers); i++ {
traversers[i] = newTraverserTokens(x.Traversal[i])
}
x.Tokens = syntax.NewRelativeTraversalTokens(traversers...)
}
if len(x.Tokens.Traversal) > 0 {
setTraverserTrailingTrivia(x.Tokens.Traversal[len(x.Tokens.Traversal)-1], t)
return
}
x.Source.SetTrailingTrivia(t)
}
func (x *RelativeTraversalExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *RelativeTraversalExpression) print(w io.Writer, p *printer) {
// Print the source expression.
p.fprintf(w, "%v", x.Source)
// Print the traversal.
printRelativeTraversal(w, p, x.Traversal, x.Tokens.GetTraversal())
}
// Type returns the type of the relative traversal expression.
func (x *RelativeTraversalExpression) Type() Type {
return GetTraversableType(x.Parts[len(x.Parts)-1])
}
func (*RelativeTraversalExpression) isExpression() {}
// ScopeTraversalExpression represents a semantically-analyzed scope traversal expression.
type ScopeTraversalExpression struct {
// The syntax node associated with the scope traversal expression.
Syntax *hclsyntax.ScopeTraversalExpr
// The tokens associated with the expression, if any.
Tokens *syntax.ScopeTraversalTokens
// The traversal's parts.
Parts []Traversable
// The root name.
RootName string
// The traversers.
Traversal hcl.Traversal
}
// SyntaxNode returns the syntax node associated with the scope traversal expression.
func (x *ScopeTraversalExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the scope traversal expression.
func (x *ScopeTraversalExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *ScopeTraversalExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *ScopeTraversalExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *ScopeTraversalExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tokens.GetRoot().LeadingTrivia
}
func (x *ScopeTraversalExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
traversers := make([]syntax.TraverserTokens, len(x.Traversal))
for i := 0; i < len(traversers); i++ {
traversers[i] = newTraverserTokens(x.Traversal[i])
}
x.Tokens = syntax.NewScopeTraversalTokens(x.RootName, traversers...)
}
x.Tokens.Root.LeadingTrivia = t
}
func (x *ScopeTraversalExpression) GetTrailingTrivia() syntax.TriviaList {
if traversal := x.Tokens.GetTraversal(); len(traversal) > 0 {
_, trailingTrivia := getTraverserTrivia(traversal[len(traversal)-1])
return trailingTrivia
}
return x.Tokens.GetRoot().TrailingTrivia
}
func (x *ScopeTraversalExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
traversers := make([]syntax.TraverserTokens, len(x.Traversal))
for i := 0; i < len(traversers); i++ {
traversers[i] = newTraverserTokens(x.Traversal[i])
}
x.Tokens = syntax.NewScopeTraversalTokens(x.RootName, traversers...)
}
if len(x.Tokens.Traversal) > 0 {
setTraverserTrailingTrivia(x.Tokens.Traversal[len(x.Tokens.Traversal)-1], t)
return
}
x.Tokens.Root.TrailingTrivia = t
}
func (x *ScopeTraversalExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *ScopeTraversalExpression) print(w io.Writer, p *printer) {
// Print the root name.
p.fprintf(w, "%v", x.Tokens.GetRoot().Or(hclsyntax.TokenIdent, x.RootName))
// Print the traversal.
printRelativeTraversal(w, p, x.Traversal[1:], x.Tokens.GetTraversal())
}
// Type returns the type of the scope traversal expression.
func (x *ScopeTraversalExpression) Type() Type {
return GetTraversableType(x.Parts[len(x.Parts)-1])
}
func (*ScopeTraversalExpression) isExpression() {}
// SplatExpression represents a semantically-analyzed splat expression.
type SplatExpression struct {
// The syntax node associated with the splat expression.
Syntax *hclsyntax.SplatExpr
// The tokens associated with the expression, if any.
Tokens *syntax.SplatTokens
// The expression being splatted.
Source Expression
// The expression applied to each element of the splat.
Each Expression
// The local variable definition associated with the current item being processed. This definition is not part of
// a scope, and can only be referenced by an AnonSymbolExpr.
Item *Variable
exprType Type
}
// SyntaxNode returns the syntax node associated with the splat expression.
func (x *SplatExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the splat expression.
func (x *SplatExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *SplatExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *SplatExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *SplatExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tokens.GetOpen().LeadingTrivia
}
func (x *SplatExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewSplatTokens(false)
}
x.Tokens.Open.LeadingTrivia = t
}
func (x *SplatExpression) GetTrailingTrivia() syntax.TriviaList {
if close := x.Tokens.GetClose(); close != nil {
return close.TrailingTrivia
}
return x.Tokens.GetStar().TrailingTrivia
}
func (x *SplatExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewSplatTokens(false)
}
if x.Tokens.Close == nil {
x.Tokens.Star.TrailingTrivia = t
return
}
x.Tokens.Close.TrailingTrivia = t
}
func (x *SplatExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *SplatExpression) print(w io.Writer, p *printer) {
isDot := x.Tokens != nil && x.Tokens.Close == nil
open := hclsyntax.TokenOBrack
if isDot {
open = hclsyntax.TokenDot
}
p.fprintf(w, "%v%v%v",
x.Source,
x.Tokens.GetOpen().Or(open),
x.Tokens.GetStar().Or(hclsyntax.TokenStar))
if !isDot {
p.fprintf(w, "%v", x.Tokens.GetClose().Or(hclsyntax.TokenCBrack))
}
p.fprintf(w, "%v", x.Each)
}
// Type returns the type of the splat expression.
func (x *SplatExpression) Type() Type {
return x.exprType
}
func (*SplatExpression) isExpression() {}
// TemplateExpression represents a semantically-analyzed template expression.
type TemplateExpression struct {
// The syntax node associated with the template expression.
Syntax *hclsyntax.TemplateExpr
// The tokens associated with the expression, if any.
Tokens *syntax.TemplateTokens
// The parts of the template expression.
Parts []Expression
exprType Type
}
// SyntaxNode returns the syntax node associated with the template expression.
func (x *TemplateExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the template expression.
func (x *TemplateExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *TemplateExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *TemplateExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *TemplateExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tokens.GetOpen().LeadingTrivia
}
func (x *TemplateExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewTemplateTokens()
}
x.Tokens.Open.LeadingTrivia = t
}
func (x *TemplateExpression) GetTrailingTrivia() syntax.TriviaList {
return x.Tokens.GetClose().TrailingTrivia
}
func (x *TemplateExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewTemplateTokens()
}
x.Tokens.Close.TrailingTrivia = t
}
func (x *TemplateExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *TemplateExpression) print(w io.Writer, p *printer) {
// Print the opening quote.
p.fprintf(w, "%v", x.Tokens.GetOpen().Or(hclsyntax.TokenOQuote))
// Print the expressions.
for _, part := range x.Parts {
p.fprintf(w, "%v", part)
}
// Print the closing quote
p.fprintf(w, "%v", x.Tokens.GetClose().Or(hclsyntax.TokenCQuote))
}
// Type returns the type of the template expression.
func (x *TemplateExpression) Type() Type {
return x.exprType
}
func (*TemplateExpression) isExpression() {}
// TemplateJoinExpression represents a semantically-analyzed template join expression.
type TemplateJoinExpression struct {
// The syntax node associated with the template join expression.
Syntax *hclsyntax.TemplateJoinExpr
// The tuple being joined.
Tuple Expression
exprType Type
}
// SyntaxNode returns the syntax node associated with the template join expression.
func (x *TemplateJoinExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the template join expression.
func (x *TemplateJoinExpression) NodeTokens() syntax.NodeTokens {
return nil
}
func (x *TemplateJoinExpression) hasLeadingTrivia() bool {
return x.Tuple.hasLeadingTrivia()
}
func (x *TemplateJoinExpression) hasTrailingTrivia() bool {
return x.Tuple.hasTrailingTrivia()
}
func (x *TemplateJoinExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tuple.GetLeadingTrivia()
}
func (x *TemplateJoinExpression) SetLeadingTrivia(t syntax.TriviaList) {
x.Tuple.SetLeadingTrivia(t)
}
func (x *TemplateJoinExpression) GetTrailingTrivia() syntax.TriviaList {
return x.Tuple.GetTrailingTrivia()
}
func (x *TemplateJoinExpression) SetTrailingTrivia(t syntax.TriviaList) {
x.Tuple.SetTrailingTrivia(t)
}
func (x *TemplateJoinExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *TemplateJoinExpression) print(w io.Writer, p *printer) {
p.fprintf(w, "%v", x.Tuple)
}
// Type returns the type of the template join expression.
func (x *TemplateJoinExpression) Type() Type {
return x.exprType
}
func (*TemplateJoinExpression) isExpression() {}
// TupleConsExpression represents a semantically-analyzed tuple construction expression.
type TupleConsExpression struct {
// The syntax node associated with the tuple construction expression.
Syntax *hclsyntax.TupleConsExpr
// The tokens associated with the expression, if any.
Tokens *syntax.TupleConsTokens
// The elements of the tuple.
Expressions []Expression
exprType Type
}
// SyntaxNode returns the syntax node associated with the tuple construction expression.
func (x *TupleConsExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the tuple construction expression.
func (x *TupleConsExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *TupleConsExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *TupleConsExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *TupleConsExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tokens.GetOpenBracket().LeadingTrivia
}
func (x *TupleConsExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewTupleConsTokens(len(x.Expressions))
}
x.Tokens.OpenBracket.LeadingTrivia = t
}
func (x *TupleConsExpression) GetTrailingTrivia() syntax.TriviaList {
return x.Tokens.GetCloseBracket().TrailingTrivia
}
func (x *TupleConsExpression) SetTrailingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewTupleConsTokens(len(x.Expressions))
}
x.Tokens.CloseBracket.TrailingTrivia = t
}
func (x *TupleConsExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *TupleConsExpression) print(w io.Writer, p *printer) {
// Print the opening bracket.
p.fprintf(w, "%v", x.Tokens.GetOpenBracket().Or(hclsyntax.TokenOBrack))
// Print each element and its comma.
commas := x.Tokens.GetCommas()
p.indented(func() {
for i, expr := range x.Expressions {
if !expr.hasLeadingTrivia() {
p.fprintf(w, "\n%s", p.indent)
}
p.fprintf(w, "%v", expr)
if i != len(x.Expressions)-1 {
var comma syntax.Token
if i < len(commas) {
comma = commas[i]
}
p.fprintf(w, "%v", comma.Or(hclsyntax.TokenComma))
}
}
// If there were commas left over, print the trivia for each.
//
// TODO(pdg): filter to only comments?
if len(x.Expressions)-1 <= len(commas) {
for _, comma := range commas[len(x.Expressions)-1:] {
p.fprintf(w, "%v", comma.AllTrivia().CollapseWhitespace())
}
}
})
// Print the closing bracket.
if x.Tokens != nil {
p.fprintf(w, "%v", x.Tokens.CloseBracket.Or(hclsyntax.TokenCBrack))
} else {
p.fprintf(w, "\n%s]", p.indent)
}
}
// Type returns the type of the tuple construction expression.
func (x *TupleConsExpression) Type() Type {
return x.exprType
}
func (*TupleConsExpression) isExpression() {}
// UnaryOpExpression represents a semantically-analyzed unary operation.
type UnaryOpExpression struct {
// The syntax node associated with the unary operation.
Syntax *hclsyntax.UnaryOpExpr
// The tokens associated with the expression, if any.
Tokens *syntax.UnaryOpTokens
// The operation.
Operation *hclsyntax.Operation
// The operand of the operation.
Operand Expression
exprType Type
}
// SyntaxNode returns the syntax node associated with the unary operation.
func (x *UnaryOpExpression) SyntaxNode() hclsyntax.Node {
return x.Syntax
}
// NodeTokens returns the tokens associated with the unary operation.
func (x *UnaryOpExpression) NodeTokens() syntax.NodeTokens {
return x.Tokens
}
func (x *UnaryOpExpression) hasLeadingTrivia() bool {
return x.Tokens != nil
}
func (x *UnaryOpExpression) hasTrailingTrivia() bool {
return x.Tokens != nil
}
func (x *UnaryOpExpression) GetLeadingTrivia() syntax.TriviaList {
return x.Tokens.GetOperator().LeadingTrivia
}
func (x *UnaryOpExpression) SetLeadingTrivia(t syntax.TriviaList) {
if x.Tokens == nil {
x.Tokens = syntax.NewUnaryOpTokens(x.Operation)
}
x.Tokens.Operator.LeadingTrivia = t
}
func (x *UnaryOpExpression) GetTrailingTrivia() syntax.TriviaList {
return x.Operand.GetTrailingTrivia()
}
func (x *UnaryOpExpression) SetTrailingTrivia(t syntax.TriviaList) {
x.Operand.SetTrailingTrivia(t)
}
func (x *UnaryOpExpression) Format(f fmt.State, c rune) {
x.print(f, &printer{})
}
func (x *UnaryOpExpression) print(w io.Writer, p *printer) {
p.fprintf(w, "%v%v", x.Tokens.GetOperator().Or(syntax.OperationTokenType(x.Operation)), x.Operand)
}
// Type returns the type of the unary operation.
func (x *UnaryOpExpression) Type() Type {
return x.exprType
}
func (*UnaryOpExpression) isExpression() {}