pulumi/pkg/codegen/pcl/invoke.go

324 lines
11 KiB
Go

// Copyright 2016-2021, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pcl
import (
"fmt"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/zclconf/go-cty/cty"
)
const Invoke = "invoke"
func getInvokeToken(call *hclsyntax.FunctionCallExpr) (string, hcl.Range, bool) {
if call.Name != Invoke || len(call.Args) < 1 {
return "", hcl.Range{}, false
}
template, ok := call.Args[0].(*hclsyntax.TemplateExpr)
if !ok || len(template.Parts) != 1 {
return "", hcl.Range{}, false
}
literal, ok := template.Parts[0].(*hclsyntax.LiteralValueExpr)
if !ok {
return "", hcl.Range{}, false
}
if literal.Val.Type() != cty.String {
return "", hcl.Range{}, false
}
return literal.Val.AsString(), call.Args[0].Range(), true
}
// annotateObjectProperties annotates the properties of an object expression with the
// types of the corresponding properties in the schema. This is used to provide type
// information for invoke calls that didn't have type annotations.
//
// This function will recursively annotate the properties of objects that are nested
// within the object expression type.
func annotateObjectProperties(modelType model.Type, schemaType schema.Type) {
if optionalType, ok := schemaType.(*schema.OptionalType); ok && optionalType != nil {
schemaType = optionalType.ElementType
}
switch arg := modelType.(type) {
case *model.ObjectType:
if schemaObjectType, ok := schemaType.(*schema.ObjectType); ok && schemaObjectType != nil {
schemaProperties := make(map[string]schema.Type)
for _, schemaProperty := range schemaObjectType.Properties {
schemaProperties[schemaProperty.Name] = schemaProperty.Type
}
// top-level annotation for the type itself
arg.Annotations = append(arg.Annotations, schemaType)
// now for each property, annotate it with the associated type from the schema
for propertyName, propertyType := range arg.Properties {
if associatedType, ok := schemaProperties[propertyName]; ok {
annotateObjectProperties(propertyType, associatedType)
}
}
}
case *model.ListType:
underlyingArrayType := arg.ElementType
if schemaArrayType, ok := schemaType.(*schema.ArrayType); ok && schemaArrayType != nil {
underlyingSchemaArrayType := schemaArrayType.ElementType
annotateObjectProperties(underlyingArrayType, underlyingSchemaArrayType)
}
case *model.TupleType:
if schemaArrayType, ok := schemaType.(*schema.ArrayType); ok && schemaArrayType != nil {
underlyingSchemaArrayType := schemaArrayType.ElementType
elementTypes := arg.ElementTypes
for _, elemType := range elementTypes {
annotateObjectProperties(elemType, underlyingSchemaArrayType)
}
}
case *model.UnionType:
// sometimes optional schema types are represented as unions: None | T
// in this case, we want to collapse the union and annotate the underlying type T
if len(arg.ElementTypes) == 2 && arg.ElementTypes[0] == model.NoneType {
annotateObjectProperties(arg.ElementTypes[1], schemaType)
} else if len(arg.ElementTypes) == 2 && arg.ElementTypes[1] == model.NoneType {
annotateObjectProperties(arg.ElementTypes[0], schemaType)
} else { //nolint:staticcheck // TODO https://github.com/pulumi/pulumi/issues/10993
// We need to handle the case where the schema type is a union type.
}
}
}
func (b *binder) bindInvokeSignature(args []model.Expression) (model.StaticFunctionSignature, hcl.Diagnostics) {
if len(args) < 1 {
return b.zeroSignature(), nil
}
template, ok := args[0].(*model.TemplateExpression)
if !ok || len(template.Parts) != 1 {
return b.zeroSignature(), hcl.Diagnostics{tokenMustBeStringLiteral(args[0])}
}
lit, ok := template.Parts[0].(*model.LiteralValueExpression)
if !ok || model.StringType.ConversionFrom(lit.Type()) == model.NoConversion {
return b.zeroSignature(), hcl.Diagnostics{tokenMustBeStringLiteral(args[0])}
}
token, tokenRange := lit.Value.AsString(), args[0].SyntaxNode().Range()
pkg, _, _, diagnostics := DecomposeToken(token, tokenRange)
if diagnostics.HasErrors() {
return b.zeroSignature(), diagnostics
}
pkgInfo := PackageInfo{
name: pkg,
}
pkgSchema, ok := b.options.packageCache.entries[pkgInfo]
if !ok {
if b.options.skipInvokeTypecheck {
return b.zeroSignature(), nil
}
return b.zeroSignature(), hcl.Diagnostics{unknownPackage(pkg, tokenRange)}
}
var fn *schema.Function
if f, tk, ok, err := pkgSchema.LookupFunction(token); err != nil {
if b.options.skipInvokeTypecheck {
return b.zeroSignature(), nil
}
return b.zeroSignature(), hcl.Diagnostics{functionLoadError(token, err, tokenRange)}
} else if !ok {
if b.options.skipInvokeTypecheck {
return b.zeroSignature(), nil
}
return b.zeroSignature(), hcl.Diagnostics{unknownFunction(token, tokenRange)}
} else {
fn = f
lit.Value = cty.StringVal(tk)
}
if len(args) < 2 {
return b.zeroSignature(), hcl.Diagnostics{errorf(tokenRange, "missing second arg")}
}
sig, err := b.signatureForArgs(fn, args[1])
if err != nil {
diag := hcl.Diagnostics{errorf(tokenRange, "Invoke binding error: %v", err)}
return b.zeroSignature(), diag
}
// annotate the input args on the expression with the input type of the function
if argsObject, isObjectExpression := args[1].(*model.ObjectConsExpression); isObjectExpression {
if fn.Inputs != nil {
annotateObjectProperties(argsObject.Type(), fn.Inputs)
}
}
sig.MultiArgumentInputs = fn.MultiArgumentInputs
return sig, nil
}
func (b *binder) makeSignature(argsType, returnType model.Type) model.StaticFunctionSignature {
return model.StaticFunctionSignature{
Parameters: []model.Parameter{
{
Name: "token",
Type: model.StringType,
},
{
Name: "args",
Type: argsType,
},
{
Name: "provider",
Type: model.NewOptionalType(model.StringType),
},
},
ReturnType: returnType,
}
}
func (b *binder) zeroSignature() model.StaticFunctionSignature {
return b.makeSignature(model.NewOptionalType(model.DynamicType), model.DynamicType)
}
func (b *binder) signatureForArgs(fn *schema.Function, args model.Expression) (model.StaticFunctionSignature, error) {
if args != nil && b.useOutputVersion(fn, args) {
return b.outputVersionSignature(fn)
}
return b.regularSignature(fn), nil
}
// Heuristic to decide when to use `fnOutput` form of a function. Will
// conservatively prefer `false` unless bind option choose to prefer otherwise.
// It decides to return `true` if doing so avoids the need to introduce an `apply` form to
// accommodate `Output` args (`Promise` args do not count).
func (b *binder) useOutputVersion(fn *schema.Function, args model.Expression) bool {
if fn.ReturnType == nil {
// No code emitted for an `fnOutput` form, impossible.
return false
}
if b.options.preferOutputVersionedInvokes {
return true
}
if fn.Inputs == nil || len(fn.Inputs.Properties) == 0 {
// use the output version when there are actual args to use
return false
}
outputFormParamType := b.schemaTypeToType(fn.Inputs.InputShape)
regularFormParamType := b.schemaTypeToType(fn.Inputs)
argsType := args.Type()
if regularFormParamType.ConversionFrom(argsType) == model.NoConversion &&
outputFormParamType.ConversionFrom(argsType) == model.SafeConversion &&
model.ContainsOutputs(argsType) {
return true
}
return false
}
func (b *binder) regularSignature(fn *schema.Function) model.StaticFunctionSignature {
var argsType model.Type
if fn.Inputs == nil {
argsType = model.NewOptionalType(model.NewObjectType(map[string]model.Type{}))
} else {
argsType = b.schemaTypeToType(fn.Inputs)
}
var returnType model.Type
if fn.ReturnType == nil {
returnType = model.NewObjectType(map[string]model.Type{})
} else {
returnType = b.schemaTypeToType(fn.ReturnType)
}
return b.makeSignature(argsType, model.NewPromiseType(returnType))
}
func (b *binder) outputVersionSignature(fn *schema.Function) (model.StaticFunctionSignature, error) {
if !fn.NeedsOutputVersion() {
return model.StaticFunctionSignature{}, fmt.Errorf("Function %s does not have an Output version", fn.Token)
}
// Given `fn.NeedsOutputVersion()==true` `fn.ReturnType != nil`.
var argsType model.Type
if fn.Inputs != nil {
argsType = b.schemaTypeToType(fn.Inputs.InputShape)
} else {
argsType = model.NewObjectType(map[string]model.Type{})
}
returnType := b.schemaTypeToType(fn.ReturnType)
return b.makeSignature(argsType, model.NewOutputType(returnType)), nil
}
// Detects invoke calls that use an output version of a function.
func IsOutputVersionInvokeCall(call *model.FunctionCallExpression) bool {
if call.Name == Invoke {
// Currently binder.bindInvokeSignature will assign
// either DynamicType, a Promise<T>, or an Output<T>
// for the return type of an invoke. Output<T> implies
// that an output version has been picked.
_, returnsOutput := call.Signature.ReturnType.(*model.OutputType)
return returnsOutput
}
return false
}
// Pattern matches to recognize `__convert(objCons(..))` pattern that
// is used to annotate object constructors with appropriate nominal
// types. If the expression matches, returns true followed by the
// constructor expression and the appropriate type.
func RecognizeTypedObjectCons(theExpr model.Expression) (bool, *model.ObjectConsExpression, model.Type) {
expr, isFunc := theExpr.(*model.FunctionCallExpression)
if !isFunc {
return false, nil, nil
}
if expr.Name != IntrinsicConvert {
return false, nil, nil
}
if len(expr.Args) != 1 {
return false, nil, nil
}
objCons, isObjCons := expr.Args[0].(*model.ObjectConsExpression)
if !isObjCons {
return false, nil, nil
}
return true, objCons, expr.Type()
}
// Pattern matches to recognize an encoded call to an output-versioned
// invoke, such as `invoke(token, __convert(objCons(..)))`. If
// matching, returns the `args` expression and its schema-bound type.
func RecognizeOutputVersionedInvoke(
expr *model.FunctionCallExpression,
) (bool, *model.ObjectConsExpression, model.Type) {
if !IsOutputVersionInvokeCall(expr) {
return false, nil, nil
}
if len(expr.Args) < 2 {
return false, nil, nil
}
return RecognizeTypedObjectCons(expr.Args[1])
}