pulumi/pkg/backend/display/internal/terminal/term.go

323 lines
7.5 KiB
Go

package terminal
import (
"bytes"
"errors"
"fmt"
"io"
"os"
"github.com/muesli/cancelreader"
"golang.org/x/term"
)
type Terminal interface {
io.WriteCloser
IsRaw() bool
Size() (width, height int, err error)
ClearLine()
ClearEnd()
CursorUp(count int)
CursorDown(count int)
HideCursor()
ShowCursor()
ReadKey() (string, error)
}
var ErrNotATerminal = errors.New("not a terminal")
type terminal struct {
fd int
info Info
raw bool
save *term.State
out io.Writer
in cancelreader.CancelReader
}
func Open(in io.Reader, out io.Writer, raw bool) (Terminal, error) {
type fileLike interface {
Fd() uintptr
}
outFile, ok := out.(fileLike)
if !ok {
return nil, ErrNotATerminal
}
outFd := int(outFile.Fd())
width, height, err := term.GetSize(outFd)
if err != nil {
return nil, fmt.Errorf("getting dimensions: %w", err)
}
if width == 0 || height == 0 {
return nil, fmt.Errorf("unusable dimensions (%v x %v)", width, height)
}
termType := os.Getenv("TERM")
if termType == "" {
termType = "vt102"
}
info := OpenInfo(termType)
var save *term.State
var inFile cancelreader.CancelReader
if raw {
if save, err = term.MakeRaw(outFd); err != nil {
return nil, fmt.Errorf("enabling raw mode: %w", err)
}
if inFile, err = cancelreader.NewReader(in); err != nil {
return nil, ErrNotATerminal
}
}
return &terminal{
fd: outFd,
info: info,
raw: raw,
save: save,
out: out,
in: inFile,
}, nil
}
func (t *terminal) IsRaw() bool {
return t.raw
}
func (t *terminal) Close() error {
t.in.Cancel()
if t.save != nil {
return term.Restore(t.fd, t.save)
}
return nil
}
func (t *terminal) Size() (width, height int, err error) {
return term.GetSize(t.fd)
}
func (t *terminal) Write(b []byte) (int, error) {
if !t.raw {
return t.out.Write(b)
}
written := 0
for {
newline := bytes.IndexByte(b, '\n')
if newline == -1 {
w, err := t.out.Write(b)
written += w
return written, err
}
w, err := t.out.Write(b[:newline])
written += w
if err != nil {
return written, err
}
if _, err = t.out.Write([]byte{'\r', '\n'}); err != nil {
return written, err
}
written++
b = b[newline+1:]
}
}
func (t *terminal) ClearLine() {
t.info.ClearLine(t.out)
}
func (t *terminal) ClearEnd() {
t.info.ClearEnd(t.out)
}
func (t *terminal) CursorUp(count int) {
t.info.CursorUp(t.out, count)
}
func (t *terminal) CursorDown(count int) {
t.info.CursorDown(t.out, count)
}
func (t *terminal) HideCursor() {
t.info.HideCursor(t.out)
}
func (t *terminal) ShowCursor() {
t.info.ShowCursor(t.out)
}
type stateFunc func(b byte) stateFunc
// ansiKind
type ansiKind int
const (
ansiError ansiKind = iota // ansiError indicates a decoding error
ansiKey // ansiKey indicates a normal keypress
ansiEscape // ansiEscape indicates an ANSI escape sequence
ansiControl // ansiControl indicates an ANSI control sequence
)
// ansiDecoder is responsible for decoding ANSI escape and control sequences as per ECMA-48 et. al.
//
// - ANSI escape sequences are of the form "'\x1b' (intermediate bytes) <final byte>", where intermediate bytes are in
// the range [0x20, 0x30) and the final byte is in the range [0x30, 0x7f)
// - ANSI control sequences are of the form "'\x1b' '[' (parameter bytes) (intermediate bytes) <final byte>", where
// parameter bytes are in the range [0x30, 0x40), intermediate bytes are in the range [0x20, 0x30), and the final
// byte is in the range [0x40, 0x7f). Note that in most references (incl. ECMA-48), "'\x1b' '['" is referred to as
// a Control Sequence Indicator, or CSI.
//
// Any sequence that is introduced with a byte that is not '\x1b' is treated as a normal keypress.
//
// No post-processing is done on the decoded sequences to ensure that e.g. the parameter count, etc. is valid--any such
// processing is up to the consumer.
type ansiDecoder struct {
kind ansiKind // the kind of the decoded sequence.
params []byte // the decoded control sequence's parameter bytes, if any
intermediate []byte // the decoded escape or control sequence's intermediate bytes, if any.
final byte // the final byte of the sequence.
}
// stateControlIntermediate decodes optional intermediate bytes and the final byte of a control sequence.
func (d *ansiDecoder) stateControlIntermediate(b byte) stateFunc {
if b >= 0x20 && b < 0x30 {
d.intermediate = append(d.intermediate, b)
return d.stateControlIntermediate
}
if b >= 0x40 && b < 0x7f {
d.kind = ansiControl
}
d.final = b
return nil
}
// stateControl decodes optional parameter bytes of a control sequence.
func (d *ansiDecoder) stateControl(b byte) stateFunc {
if b >= 0x30 && b < 0x40 {
d.params = append(d.params, b)
return d.stateControl
}
return d.stateControlIntermediate(b)
}
// stateEscapeIntermediate decodes optional intermediate bytes and the final byte of an escape sequence.
func (d *ansiDecoder) stateEscapeIntermediate(b byte) stateFunc {
if b >= 0x20 && b < 0x30 {
d.intermediate = append(d.intermediate, b)
return d.stateEscapeIntermediate
}
if b >= 0x30 && b < 0x7f {
d.kind = ansiEscape
}
d.final = b
return nil
}
// stateEscape determines whether a sequence beginning with '\x1b' is an escape sequence or a control sequence.
func (d *ansiDecoder) stateEscape(b byte) stateFunc {
if b == '[' {
return d.stateControl
}
return d.stateEscapeIntermediate(b)
}
// stateInit is the initial state for the decoder.
func (d *ansiDecoder) stateInit(b byte) stateFunc {
if b == 0x1b {
return d.stateEscape
}
d.kind, d.final = ansiKey, b
return nil
}
// decode decodes the next key, escape sequence, or control sequence from in. The results are left in the decoder.
func (d *ansiDecoder) decode(in io.Reader) error {
state := d.stateInit
for {
var b [1]byte
if _, err := in.Read(b[:]); err != nil {
return err
}
next := state(b[0])
if next == nil {
return nil
}
state = next
}
}
const (
KeyCtrlC = "ctrl+c"
KeyCtrlO = "ctrl+o"
KeyDown = "down"
KeyPageDown = "page-down"
KeyPageUp = "page-up"
KeyUp = "up"
)
// ReadKey reads a keypress from the terminal.
func (t *terminal) ReadKey() (string, error) {
if t.in == nil {
return "", io.EOF
}
// Decode an ANSI sequence from the input.
var d ansiDecoder
if err := d.decode(t.in); err != nil {
if errors.Is(err, cancelreader.ErrCanceled) {
err = io.EOF
}
return "", err
}
// Turn the decoded sequence into a key name.
//
// Some of these are described by ECMA-48, while others are described by the xterm or DEC docs:
// - https://www.ecma-international.org/wp-content/uploads/ECMA-48_5th_edition_june_1991.pdf
// - https://invisible-island.net/xterm/ctlseqs/ctlseqs.html
// - https://vt100.net/docs/vt510-rm/contents.html
switch d.kind {
case ansiKey:
switch d.final {
case 3: // ETX
return KeyCtrlC, nil
case 15: // SI
return KeyCtrlO, nil
}
return string([]byte{d.final}), nil
case ansiEscape:
return fmt.Sprintf("<escape %v>", d.final), nil
case ansiControl:
switch d.final {
case 'A':
// CUU - Cursor Up: CSI (Pn) A
return KeyUp, nil
case 'B':
// CUD - Cursor Down: CSI (Pn) B
return KeyDown, nil
case '~':
// DECFNK - Function Key: CSI Ps1 (; Ps2) ~
switch string(d.params) {
case "5":
// Page Up: CSI 5 ~
return KeyPageUp, nil
case "6":
// Page Down: CSI 6 ~
return KeyPageDown, nil
}
}
return fmt.Sprintf("<control %v>", d.final), nil
default:
return "", errors.New("invalid control sequence")
}
}