pulumi/pkg/codegen/pcl/rewrite_convert.go

397 lines
13 KiB
Go

package pcl
import (
"strings"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
func sameSchemaTypes(xt, yt model.Type) bool {
xs, _ := GetSchemaForType(xt)
ys, _ := GetSchemaForType(yt)
if xs == ys {
return true
}
xu, ok := xs.(*schema.UnionType)
if !ok {
return false
}
yu, ok := ys.(*schema.UnionType)
if !ok {
return false
}
types := codegen.Set{}
for _, t := range xu.ElementTypes {
types.Add(t)
}
for _, t := range yu.ElementTypes {
if !types.Has(t) {
return false
}
}
return true
}
// rewriteConversions implements the core of RewriteConversions. It returns the rewritten expression and true if the
// type of the expression may have changed.
func rewriteConversions(x model.Expression, to model.Type, diags *hcl.Diagnostics) (model.Expression, bool) {
if x == nil || to == nil {
return x, false
}
// If rewriting an operand changed its type and the type of the expression depends on the type of that operand, the
// expression must be typechecked in order to update its type.
var typecheck bool
switch x := x.(type) {
case *model.AnonymousFunctionExpression:
x.Body, _ = rewriteConversions(x.Body, to, diags)
case *model.BinaryOpExpression:
x.LeftOperand, _ = rewriteConversions(x.LeftOperand, model.InputType(x.LeftOperandType()), diags)
x.RightOperand, _ = rewriteConversions(x.RightOperand, model.InputType(x.RightOperandType()), diags)
case *model.ConditionalExpression:
var trueChanged, falseChanged bool
x.Condition, _ = rewriteConversions(x.Condition, model.InputType(model.BoolType), diags)
x.TrueResult, trueChanged = rewriteConversions(x.TrueResult, to, diags)
x.FalseResult, falseChanged = rewriteConversions(x.FalseResult, to, diags)
typecheck = trueChanged || falseChanged
case *model.ForExpression:
traverserType := model.NumberType
if x.Key != nil {
traverserType = model.StringType
x.Key, _ = rewriteConversions(x.Key, model.InputType(model.StringType), diags)
}
if x.Condition != nil {
x.Condition, _ = rewriteConversions(x.Condition, model.InputType(model.BoolType), diags)
}
valueType, tdiags := to.Traverse(model.MakeTraverser(traverserType))
*diags = diags.Extend(tdiags)
x.Value, typecheck = rewriteConversions(x.Value, valueType.(model.Type), diags)
case *model.FunctionCallExpression:
args := x.Args
for _, param := range x.Signature.Parameters {
if len(args) == 0 {
break
}
args[0], _ = rewriteConversions(args[0], model.InputType(param.Type), diags)
args = args[1:]
}
if x.Signature.VarargsParameter != nil {
for i := range args {
args[i], _ = rewriteConversions(args[i], model.InputType(x.Signature.VarargsParameter.Type), diags)
}
}
case *model.IndexExpression:
x.Key, _ = rewriteConversions(x.Key, x.KeyType(), diags)
case *model.ObjectConsExpression:
if v := resolveDiscriminatedUnions(x, to); v != nil {
to = v
typecheck = true
}
for i := range x.Items {
item := &x.Items[i]
if item.Key.Type() == model.DynamicType {
// We don't know the type of this expression, so we can't correct the
// type.
continue
}
key, ediags := item.Key.Evaluate(&hcl.EvalContext{}) // empty context, we need a constant string
*diags = diags.Extend(ediags)
valueType, tdiags := to.Traverse(hcl.TraverseIndex{
Key: key,
SrcRange: item.Key.SyntaxNode().Range(),
})
*diags = diags.Extend(tdiags)
var valueChanged bool
item.Key, _ = rewriteConversions(item.Key, model.InputType(model.StringType), diags)
item.Value, valueChanged = rewriteConversions(item.Value, valueType.(model.Type), diags)
typecheck = typecheck || valueChanged
}
case *model.TupleConsExpression:
for i, expr := range x.Expressions {
if expr.Type() == model.DynamicType {
// We don't know the type of this expression, so we can't correct the
// type.
continue
}
valueType, tdiags := to.Traverse(hcl.TraverseIndex{
Key: cty.NumberIntVal(int64(i)),
SrcRange: x.Syntax.Range(),
})
*diags = diags.Extend(tdiags)
var exprChanged bool
x.Expressions[i], exprChanged = rewriteConversions(expr, valueType.(model.Type), diags)
typecheck = typecheck || exprChanged
}
case *model.UnaryOpExpression:
x.Operand, _ = rewriteConversions(x.Operand, model.InputType(x.OperandType()), diags)
}
var typeChanged bool
if typecheck {
typecheckDiags := x.Typecheck(false)
*diags = diags.Extend(typecheckDiags)
typeChanged = true
}
// If we can convert a primitive value in place, do so.
if value, ok := convertPrimitiveValues(x, to); ok {
x, typeChanged = value, true
}
// If the expression's type is directly assignable to the destination type, no conversion is necessary.
if to.AssignableFrom(x.Type()) && sameSchemaTypes(to, x.Type()) {
return x, typeChanged
}
// Otherwise, wrap the expression in a call to __convert.
return NewConvertCall(x, to), true
}
// resolveDiscriminatedUnions reduces discriminated unions of object types to the type that matches
// the shape of the given object cons expression. A given object expression would only match a single
// case of the union.
func resolveDiscriminatedUnions(obj *model.ObjectConsExpression, modelType model.Type) model.Type {
modelUnion, ok := modelType.(*model.UnionType)
if !ok {
return nil
}
schType, ok := GetSchemaForType(modelUnion)
if !ok {
return nil
}
schType = codegen.UnwrapType(schType)
union, ok := schType.(*schema.UnionType)
if !ok || union.Discriminator == "" {
return nil
}
objTypes := GetDiscriminatedUnionObjectMapping(modelUnion)
for _, item := range obj.Items {
name, ok := item.Key.(*model.LiteralValueExpression)
if !ok || name.Value.AsString() != union.Discriminator {
continue
}
// The discriminator should be a string, but it could be in the
// form of a *string wrapped in a __convert call so we try both.
var lit *model.TemplateExpression
lit, ok = item.Value.(*model.TemplateExpression)
if !ok {
var call *model.FunctionCallExpression
call, ok = item.Value.(*model.FunctionCallExpression)
if ok && call.Name == IntrinsicConvert {
lit, ok = call.Args[0].(*model.TemplateExpression)
}
}
if !ok {
continue
}
discriminatorValue, ok := extractStringValue(lit)
if !ok {
return nil
}
if ref, ok := union.Mapping[discriminatorValue]; ok {
discriminatorValue = strings.TrimPrefix(ref, "#/types/")
}
if t, ok := objTypes[discriminatorValue]; ok {
return t
}
}
return nil
}
// RewriteConversions wraps automatic conversions indicated by the HCL2 spec and conversions to schema-annotated types
// in calls to the __convert intrinsic.
//
// Note that the result is a bit out of line with the HCL2 spec, as static conversions may happen earlier than they
// would at runtime. For example, consider the case of a tuple of strings that is being converted to a list of numbers:
//
// [a, b, c]
//
// Calling RewriteConversions on this expression with a destination type of list(number) would result in this IR:
//
// [__convert(a), __convert(b), __convert(c)]
//
// If any of these conversions fail, the evaluation of the tuple itself fails. The HCL2 evaluation semantics, however,
// would convert the tuple _after_ it has been evaluated. The IR that matches these semantics is
//
// __convert([a, b, c])
//
// This transform uses the former representation so that it can appropriately insert calls to `__convert` in the face
// of schema-annotated types. There is a reasonable argument to be made that RewriteConversions should not be
// responsible for propagating schema annotations, and that this pass should be split in two: one pass would insert
// conversions that match HCL2 evaluation semantics, and another would insert calls to some separate intrinsic in order
// to propagate schema information.
func RewriteConversions(x model.Expression, to model.Type) (model.Expression, hcl.Diagnostics) {
var diags hcl.Diagnostics
x, _ = rewriteConversions(x, to, &diags)
return x, diags
}
// convertPrimitiveValues returns a new expression if the given expression can be converted to another primitive type
// (bool, int, number, string) that matches the target type.
func convertPrimitiveValues(from model.Expression, to model.Type) (model.Expression, bool) {
var expression model.Expression
switch {
case from == nil || to == nil:
return from, false
case to.AssignableFrom(from.Type()) || to.AssignableFrom(model.DynamicType):
return nil, false
case to.AssignableFrom(model.BoolType):
if stringLiteral, ok := extractStringValue(from); ok {
if value, err := convert.Convert(cty.StringVal(stringLiteral), cty.Bool); err == nil {
expression = &model.LiteralValueExpression{Value: value}
}
}
case to.AssignableFrom(model.IntType), to.AssignableFrom(model.NumberType):
if stringLiteral, ok := extractStringValue(from); ok {
if value, err := convert.Convert(cty.StringVal(stringLiteral), cty.Number); err == nil {
expression = &model.LiteralValueExpression{Value: value}
}
}
case to.AssignableFrom(model.StringType):
if stringValue, ok := convertLiteralToString(from); ok {
expression = &model.TemplateExpression{
Parts: []model.Expression{&model.LiteralValueExpression{
Value: cty.StringVal(stringValue),
}},
}
}
}
if expression == nil {
return nil, false
}
diags := expression.Typecheck(false)
contract.Assertf(len(diags) == 0, "error typechecking expression: %v", diags)
expression.SetLeadingTrivia(from.GetLeadingTrivia())
expression.SetTrailingTrivia(from.GetTrailingTrivia())
return expression, true
}
// extractStringValue returns a string if the given expression is a template expression containing a single string
// literal value.
func extractStringValue(arg model.Expression) (string, bool) {
template, ok := arg.(*model.TemplateExpression)
if !ok || len(template.Parts) != 1 {
return "", false
}
lit, ok := template.Parts[0].(*model.LiteralValueExpression)
if !ok || model.StringType.ConversionFrom(lit.Type()) == model.NoConversion {
return "", false
}
return lit.Value.AsString(), true
}
// convertLiteralToString converts a literal of type Bool, Int, or Number to its string representation. It also handles
// the unary negate operation in front of a literal number.
func convertLiteralToString(from model.Expression) (string, bool) {
switch expr := from.(type) {
case *model.UnaryOpExpression:
if expr.Operation == hclsyntax.OpNegate {
if operandValue, ok := convertLiteralToString(expr.Operand); ok {
return "-" + operandValue, true
}
}
case *model.LiteralValueExpression:
if stringValue, err := convert.Convert(expr.Value, cty.String); err == nil {
if stringValue.IsNull() {
return "", false
}
return stringValue.AsString(), true
}
}
return "", false
}
// lowerConversion performs the main logic of LowerConversion. nil, false is
// returned if there is no conversion (safe or unsafe) between `from` and `to`.
// This can occur when a loosely typed program is converted, or if an other
// rewrite violated the type system.
func lowerConversion(from model.Expression, to model.Type) (model.Type, bool) {
switch to := to.(type) {
case *model.UnionType:
// Assignment: it just works
for _, to := range to.ElementTypes {
if to.AssignableFrom(from.Type()) {
return to, true
}
}
conversions := make([]model.ConversionKind, len(to.ElementTypes))
for i, to := range to.ElementTypes {
conversions[i] = to.ConversionFrom(from.Type())
if conversions[i] == model.SafeConversion {
// We found a safe conversion, and we will use it. We don't need
// to search for more conversions.
return to, true
}
}
// Unsafe conversions:
for i, to := range to.ElementTypes {
if conversions[i] == model.UnsafeConversion {
return to, true
}
}
return nil, false
default:
return to, true
}
}
// LowerConversion lowers a conversion for a specific value, such that
// converting `from` to a value of the returned type will produce valid code.
// The algorithm prioritizes safe conversions over unsafe conversions. If no
// conversion can be found, nil, false is returned.
//
// This is useful because it cuts out conversion steps which the caller doesn't
// need to worry about. For example:
// Given inputs
//
// from = string("foo") # a constant string with value "foo"
// to = union(enum(string: "foo", "bar"), input(enum(string: "foo", "bar")), none)
//
// We would receive output type:
//
// enum(string: "foo", "bar")
//
// since the caller can convert string("foo") to the enum directly, and does not
// need to consider the union.
//
// For another example consider inputs:
//
// from = var(string) # A variable of type string
// to = union(enum(string: "foo", "bar"), string)
//
// We would return type:
//
// string
//
// since var(string) can be safely assigned to string, but unsafely assigned to
// enum(string: "foo", "bar").
func LowerConversion(from model.Expression, to model.Type) model.Type {
if t, ok := lowerConversion(from, to); ok {
return t
}
return to
}