pulumi/pkg/codegen/python/gen_program.go

1178 lines
35 KiB
Go

// Copyright 2016-2020, Pulumi Corporation.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package python
import (
"bytes"
"fmt"
"io"
"os"
"path"
"path/filepath"
"slices"
"sort"
"strings"
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/hcl/v2"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model/format"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/syntax"
"github.com/pulumi/pulumi/pkg/v3/codegen/pcl"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/sdk/v3/go/common/encoding"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/pulumi/pulumi/sdk/v3/go/common/workspace"
)
const stackRefQualifiedName = "pulumi.StackReference"
type generator struct {
// The formatter to use when generating code.
*format.Formatter
program *pcl.Program
diagnostics hcl.Diagnostics
configCreated bool
quotes map[model.Expression]string
isComponent bool
// insideTypedDict is used to track if the generator is currently inside a TypedDict so that
// nested TypedDicts can be handled correctly.
insideTypedDict bool
}
func GenerateProgram(program *pcl.Program) (map[string][]byte, hcl.Diagnostics, error) {
pcl.MapProvidersAsResources(program)
g, err := newGenerator(program)
if err != nil {
return nil, nil, err
}
// Linearize the nodes into an order appropriate for procedural code generation.
nodes := pcl.Linearize(program)
// Creating a list to store and later print helper methods if they turn out to be needed
preambleHelperMethods := codegen.NewStringSet()
var main bytes.Buffer
g.genPreamble(&main, program, preambleHelperMethods)
for _, n := range nodes {
g.genNode(&main, n)
}
files := map[string][]byte{
"__main__.py": main.Bytes(),
}
for componentDir, component := range program.CollectComponents() {
componentFilename := strings.ReplaceAll(filepath.Base(componentDir), "-", "_")
componentName := component.DeclarationName()
componentGenerator, err := newGenerator(component.Program)
if err != nil {
return files, componentGenerator.diagnostics, err
}
// mark the generator to target components
componentGenerator.isComponent = true
componentPreambleMethods := codegen.NewStringSet()
var componentBuffer bytes.Buffer
// generate imports for the component
componentGenerator.genPreamble(&componentBuffer, component.Program, componentPreambleMethods)
componentGenerator.genComponentDefinition(&componentBuffer, component, componentName)
files[componentFilename+".py"] = componentBuffer.Bytes()
}
return files, g.diagnostics, nil
}
func componentInputElementType(pclType model.Type) string {
switch pclType {
case model.BoolType:
return "bool"
case model.IntType:
return "int"
case model.NumberType:
return "float"
case model.StringType:
return "str"
default:
switch pclType := pclType.(type) {
case *model.ListType:
elementType := componentInputElementType(pclType.ElementType)
return fmt.Sprintf("list[%s]", elementType)
case *model.MapType:
elementType := componentInputElementType(pclType.ElementType)
return fmt.Sprintf("Dict[str, %s]", elementType)
// reduce option(T) to just T
// the TypedDict has total=False which means all properties are optional by default
case *model.UnionType:
if len(pclType.ElementTypes) == 2 && pclType.ElementTypes[0] == model.NoneType {
return componentInputElementType(pclType.ElementTypes[1])
} else if len(pclType.ElementTypes) == 2 && pclType.ElementTypes[1] == model.NoneType {
return componentInputElementType(pclType.ElementTypes[0])
} else {
return "Any"
}
default:
return "Any"
}
}
}
// collectObjectTypedConfigVariables returns the object types in config variables need to be emitted
// as classes.
func collectObjectTypedConfigVariables(component *pcl.Component) map[string]*model.ObjectType {
objectTypes := map[string]*model.ObjectType{}
for _, config := range component.Program.ConfigVariables() {
switch configType := config.Type().(type) {
case *model.ObjectType:
objectTypes[config.Name()] = configType
case *model.ListType:
switch elementType := configType.ElementType.(type) {
case *model.ObjectType:
objectTypes[config.Name()] = elementType
}
case *model.MapType:
switch elementType := configType.ElementType.(type) {
case *model.ObjectType:
objectTypes[config.Name()] = elementType
}
}
}
return objectTypes
}
func (g *generator) genComponentDefinition(w io.Writer, component *pcl.Component, componentName string) {
configVars := component.Program.ConfigVariables()
hasAnyInputVariables := len(configVars) > 0
if hasAnyInputVariables {
objectTypedConfigs := collectObjectTypedConfigVariables(component)
variableNames := pcl.SortedStringKeys(objectTypedConfigs)
// generate resource args for this component
for _, variableName := range variableNames {
objectType := objectTypedConfigs[variableName]
objectTypeName := title(variableName)
g.Fprintf(w, "class %s(TypedDict, total=False):\n", objectTypeName)
g.Indented(func() {
propertyNames := pcl.SortedStringKeys(objectType.Properties)
for _, propertyName := range propertyNames {
propertyType := objectType.Properties[propertyName]
inputType := componentInputElementType(propertyType)
g.Fprintf(w, "%s%s: Input[%s]\n",
g.Indent,
propertyName,
inputType)
}
})
g.Fgen(w, "\n")
}
// emit args class
g.Fgenf(w, "class %sArgs(TypedDict, total=False):\n", componentName)
g.Indented(func() {
// define constructor args
for _, configVar := range configVars {
argName := configVar.Name()
argType := componentInputElementType(configVar.Type())
switch configType := configVar.Type().(type) {
case *model.ObjectType:
// for objects of type T, generate T as is
argType = title(configVar.Name())
case *model.ListType:
// for list(T) where T is an object type, generate List[T]
switch configType.ElementType.(type) {
case *model.ObjectType:
objectTypeName := title(configVar.Name())
argType = fmt.Sprintf("list(%s)", objectTypeName)
}
case *model.MapType:
// for map(T) where T is an object type, generate Dict[str, T]
switch configType.ElementType.(type) {
case *model.ObjectType:
objectTypeName := title(configVar.Name())
argType = fmt.Sprintf("Dict[str, %s]", objectTypeName)
}
}
argType = fmt.Sprintf("Input[%s]", argType)
g.Fgenf(w, "%s%s: %s", g.Indent, argName, argType)
g.Fgen(w, "\n")
}
})
g.Fgen(w, "\n")
}
componentToken := "components:index:" + componentName
g.Fgenf(w, "class %s(pulumi.ComponentResource):\n", componentName)
g.Indented(func() {
if hasAnyInputVariables {
g.Fgenf(w, "%sdef __init__(self, name: str, args: %s, opts:Optional[pulumi.ResourceOptions] = None):\n",
g.Indent,
componentName+"Args")
g.Fgenf(w, "%s%ssuper().__init__(\"%s\", name, args, opts)\n",
g.Indent,
g.Indent,
componentToken)
} else {
g.Fgenf(w, "%sdef __init__(self, name: str, opts: Optional[pulumi.ResourceOptions] = None):\n", g.Indent)
g.Fgenf(w, "%s%ssuper().__init__(\"%s\", name, {}, opts)\n",
g.Indent,
g.Indent,
componentToken)
}
g.Fgen(w, "\n")
g.Indented(func() {
for _, node := range pcl.Linearize(component.Program) {
switch node := node.(type) {
case *pcl.LocalVariable:
g.genLocalVariable(w, node)
g.Fgen(w, "\n")
case *pcl.Component:
// set options { parent = self } for the component resource
// where "self" is a reference to the component resource itself
if node.Options == nil {
node.Options = &pcl.ResourceOptions{}
}
if node.Options.Parent == nil {
node.Options.Parent = model.ConstantReference(&model.Constant{
Name: "self",
})
}
g.genComponent(w, node)
g.Fgen(w, "\n")
case *pcl.Resource:
// set options { parent = self } for the component resource
// where "self" is a reference to the component resource itself
if node.Options == nil {
node.Options = &pcl.ResourceOptions{}
}
if node.Options.Parent == nil {
node.Options.Parent = model.ConstantReference(&model.Constant{
Name: "self",
})
}
g.genResource(w, node)
g.Fgen(w, "\n")
}
}
outputVars := component.Program.OutputVariables()
for _, output := range outputVars {
g.Fgenf(w, "%sself.%s = %v\n", g.Indent, output.Name(), output.Value)
}
if len(outputVars) == 0 {
g.Fgenf(w, "%sself.register_outputs()\n", g.Indent)
} else {
g.Fgenf(w, "%sself.register_outputs({\n", g.Indent)
g.Indented(func() {
for index, output := range outputVars {
g.Fgenf(w, "%s'%s': %v", g.Indent, output.Name(), output.Value)
if index != len(outputVars)-1 {
g.Fgen(w, ", ")
}
g.Fgen(w, "\n")
}
})
g.Fgenf(w, "%s})", g.Indent)
}
})
})
}
func GenerateProject(
directory string, project workspace.Project,
program *pcl.Program, localDependencies map[string]string,
) error {
files, diagnostics, err := GenerateProgram(program)
if err != nil {
return err
}
if diagnostics.HasErrors() {
return diagnostics
}
// Check the project for "main" as that changes where we write out files and some relative paths.
rootDirectory := directory
if project.Main != "" {
directory = filepath.Join(rootDirectory, project.Main)
// mkdir -p the subdirectory
err = os.MkdirAll(directory, 0o700)
if err != nil {
return fmt.Errorf("create main directory: %w", err)
}
}
var options map[string]interface{}
if _, ok := localDependencies["pulumi"]; ok {
options = map[string]interface{}{
"virtualenv": "venv",
}
}
// Set the runtime to "python" then marshal to Pulumi.yaml
project.Runtime = workspace.NewProjectRuntimeInfo("python", options)
projectBytes, err := encoding.YAML.Marshal(project)
if err != nil {
return err
}
// Build a requirements.txt based on the packages used by program
requirementsTxtLines := []string{}
if path, ok := localDependencies["pulumi"]; ok {
requirementsTxtLines = append(requirementsTxtLines, path)
} else {
requirementsTxtLines = append(requirementsTxtLines, "pulumi>=3.0.0,<4.0.0")
}
// For each package add a PackageReference line
// find references from the main/entry program and programs of components
packages, err := program.CollectNestedPackageSnapshots()
if err != nil {
return err
}
for _, p := range packages {
if p.Name == "pulumi" {
continue
}
if path, ok := localDependencies[p.Name]; ok {
requirementsTxtLines = append(requirementsTxtLines, path)
} else {
if err := p.ImportLanguages(map[string]schema.Language{"python": Importer}); err != nil {
return err
}
packageName := "pulumi-" + p.Name
if langInfo, found := p.Language["python"]; found {
pyInfo, ok := langInfo.(PackageInfo)
if ok && pyInfo.PackageName != "" {
packageName = pyInfo.PackageName
}
}
if p.Version != nil {
requirementsTxtLines = append(requirementsTxtLines, fmt.Sprintf("%s==%s", packageName, p.Version.String()))
} else {
requirementsTxtLines = append(requirementsTxtLines, packageName)
}
}
}
// We want the requirements.txt files we generate to be stable, so we sort the
// lines before obtaining the bytes.
slices.Sort(requirementsTxtLines)
files["requirements.txt"] = []byte(strings.Join(requirementsTxtLines, "\n") + "\n")
// Add the language specific .gitignore
files[".gitignore"] = []byte(`*.pyc
venv/`)
for filename, data := range files {
outPath := path.Join(directory, filename)
err := os.WriteFile(outPath, data, 0o600)
if err != nil {
return fmt.Errorf("could not write output program: %w", err)
}
}
// Write out the Pulumi.yaml
err = os.WriteFile(path.Join(rootDirectory, "Pulumi.yaml"), projectBytes, 0o600)
if err != nil {
return fmt.Errorf("write Pulumi.yaml: %w", err)
}
return nil
}
func newGenerator(program *pcl.Program) (*generator, error) {
// Import Python-specific schema info.
packages, err := program.PackageSnapshots()
if err != nil {
return nil, err
}
for _, p := range packages {
if err := p.ImportLanguages(map[string]schema.Language{"python": Importer}); err != nil {
return nil, err
}
}
g := &generator{
program: program,
quotes: map[model.Expression]string{},
}
g.Formatter = format.NewFormatter(g)
return g, nil
}
// genLeadingTrivia generates the list of leading trivia associated with a given token.
func (g *generator) genLeadingTrivia(w io.Writer, token syntax.Token) {
// TODO(pdg): whitespace
for _, t := range token.LeadingTrivia {
if c, ok := t.(syntax.Comment); ok {
g.genComment(w, c)
}
}
}
// genTrailingTrivia generates the list of trailing trivia associated with a given token.
func (g *generator) genTrailingTrivia(w io.Writer, token syntax.Token) {
// TODO(pdg): whitespace
for _, t := range token.TrailingTrivia {
if c, ok := t.(syntax.Comment); ok {
g.genComment(w, c)
}
}
}
// genTrivia generates the list of trivia associated with a given token.
func (g *generator) genTrivia(w io.Writer, token syntax.Token) {
g.genLeadingTrivia(w, token)
g.genTrailingTrivia(w, token)
}
// genComment generates a comment into the output.
func (g *generator) genComment(w io.Writer, comment syntax.Comment) {
for _, l := range comment.Lines {
g.Fgenf(w, "%s#%s\n", g.Indent, l)
}
}
// rewriteApplyLambdaBody rewrites the body of a lambda where it rewrites the usage of lambda variables
// into an index expression of a dictionary. for example lambda arg `value` will become <argsParamName>["value"]
func rewriteApplyLambdaBody(applyLambda *model.AnonymousFunctionExpression, argsParamName string) model.Expression {
rewriter := func(expr model.Expression) (model.Expression, hcl.Diagnostics) {
switch expr := expr.(type) {
case *model.ScopeTraversalExpression:
if len(expr.Parts) == 1 {
// check whether this expression is traversing a lambda arg
// rewrite arg into argsParamName["argName"]
for _, param := range applyLambda.Signature.Parameters {
if param.Name == expr.RootName {
return &model.IndexExpression{
Collection: model.VariableReference(&model.Variable{
Name: argsParamName,
}),
Key: &model.LiteralValueExpression{
Value: cty.StringVal(fmt.Sprintf("\"%s\"", param.Name)),
},
}, nil
}
}
}
}
return expr, nil
}
rewrittenBody, _ := model.VisitExpression(applyLambda.Body, model.IdentityVisitor, rewriter)
return rewrittenBody
}
func (g *generator) genPreamble(w io.Writer, program *pcl.Program, preambleHelperMethods codegen.StringSet) {
// Print the pulumi import at the top.
g.Fprintln(w, "import pulumi")
// Accumulate other imports for the various providers. Don't emit them yet, as we need to sort them later on.
type Import struct {
// Use an "import ${KEY} as ${.Pkg}"
ImportAs bool
// Only relevant for when ImportAs=true
Pkg string
}
importSet := map[string]Import{}
for _, n := range program.Nodes {
if r, isResource := n.(*pcl.Resource); isResource {
pcl.FixupPulumiPackageTokens(r)
pkg, _, _, _ := r.DecomposeToken()
if pkg == "pulumi" {
continue
}
packageName := "pulumi_" + makeValidIdentifier(pkg)
if r.Schema != nil && r.Schema.PackageReference != nil {
pkg, err := r.Schema.PackageReference.Definition()
if err == nil {
if pkgInfo, ok := pkg.Language["python"].(PackageInfo); ok && pkgInfo.PackageName != "" {
packageName = pkgInfo.PackageName
}
}
}
importSet[packageName] = Import{ImportAs: true, Pkg: makeValidIdentifier(pkg)}
}
diags := n.VisitExpressions(nil, func(n model.Expression) (model.Expression, hcl.Diagnostics) {
if call, ok := n.(*model.FunctionCallExpression); ok {
if i := g.getFunctionImports(call); len(i) > 0 && i[0] != "" {
for _, importPackage := range i {
importAs := strings.HasPrefix(importPackage, "pulumi_")
var maybePkg string
if importAs {
maybePkg = importPackage[len("pulumi_"):]
}
importSet[importPackage] = Import{
ImportAs: importAs,
Pkg: maybePkg,
}
}
}
if helperMethodBody, ok := getHelperMethodIfNeeded(call.Name, g.Indent); ok {
preambleHelperMethods.Add(helperMethodBody)
}
}
return n, nil
})
contract.Assertf(len(diags) == 0, "unexpected diagnostics reported: %v", diags)
}
var imports []string
importSetNames := codegen.NewStringSet()
for k := range importSet {
importSetNames.Add(k)
}
for _, pkg := range importSetNames.SortedValues() {
if pkg == "pulumi" {
continue
}
control := importSet[pkg]
if control.ImportAs {
imports = append(imports, fmt.Sprintf("import %s as %s", pkg, EnsureKeywordSafe(control.Pkg)))
} else {
imports = append(imports, "import "+pkg)
}
}
if g.isComponent {
// add typing information
imports = append(imports, "from typing import Optional, Dict, TypedDict, Any")
imports = append(imports, "from pulumi import Input")
}
seenComponentImports := map[string]bool{}
for _, node := range program.Nodes {
if component, ok := node.(*pcl.Component); ok {
componentPath := strings.ReplaceAll(filepath.Base(component.DirPath()), "-", "_")
componentName := component.DeclarationName()
pathAndName := componentPath + "-" + componentName
if _, ok := seenComponentImports[pathAndName]; !ok {
imports = append(imports, fmt.Sprintf("from %s import %s", componentPath, componentName))
seenComponentImports[pathAndName] = true
}
}
}
// Now sort the imports and emit them.
sort.Strings(imports)
for _, i := range imports {
g.Fprintln(w, i)
}
g.Fprint(w, "\n")
// If we collected any helper methods that should be added, write them just before the main func
for _, preambleHelperMethodBody := range preambleHelperMethods.SortedValues() {
g.Fprintf(w, "%s\n\n", preambleHelperMethodBody)
}
}
func (g *generator) genNode(w io.Writer, n pcl.Node) {
switch n := n.(type) {
case *pcl.Resource:
g.genResource(w, n)
case *pcl.ConfigVariable:
g.genConfigVariable(w, n)
case *pcl.LocalVariable:
g.genLocalVariable(w, n)
case *pcl.OutputVariable:
g.genOutputVariable(w, n)
case *pcl.Component:
g.genComponent(w, n)
}
}
func tokenToQualifiedName(pkg, module, member string) string {
components := strings.Split(module, "/")
for i, component := range components {
components[i] = PyName(component)
}
module = strings.Join(components, ".")
if module != "" {
module = "." + module
}
return fmt.Sprintf("%s%s.%s", PyName(pkg), module, title(member))
}
// resourceTypeName computes the qualified name of a python resource.
func resourceTypeName(r *pcl.Resource) (string, hcl.Diagnostics) {
// Compute the resource type from the Pulumi type token.
pkg, module, member, diagnostics := r.DecomposeToken()
pcl.FixupPulumiPackageTokens(r)
// Normalize module.
if r.Schema != nil {
pkg, err := r.Schema.PackageReference.Definition()
if err != nil {
diagnostics = append(diagnostics, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "unable to bind schema for resource",
Detail: err.Error(),
Subject: r.Definition.Syntax.DefRange().Ptr(),
})
} else {
err = pkg.ImportLanguages(map[string]schema.Language{"python": Importer})
contract.AssertNoErrorf(err, "failed to import python language plugin for package %s", pkg.Name)
if lang, ok := pkg.Language["python"]; ok {
if pkgInfo, ok := lang.(PackageInfo); ok {
if m, ok := pkgInfo.ModuleNameOverrides[module]; ok {
module = m
}
}
}
}
}
return tokenToQualifiedName(pkg, module, member), diagnostics
}
func (g *generator) typedDictEnabled(expr model.Expression, typ model.Type) bool {
schemaType, ok := pcl.GetSchemaForType(typ)
if !ok {
return false
}
schemaType = codegen.UnwrapType(schemaType)
objType, ok := schemaType.(*schema.ObjectType)
if !ok {
return false
}
pkg, err := objType.PackageReference.Definition()
contract.AssertNoErrorf(err, "error loading definition for package %q", objType.PackageReference.Name())
if lang, ok := pkg.Language["python"]; ok {
if pkgInfo, ok := lang.(PackageInfo); ok {
if typedDictEnabled(pkgInfo.InputTypes) {
return true
}
}
}
return false
}
// argumentTypeName computes the Python argument class name for the given expression and model type.
func (g *generator) argumentTypeName(expr model.Expression, destType model.Type) string {
schemaType, ok := pcl.GetSchemaForType(destType)
if !ok {
return ""
}
schemaType = codegen.UnwrapType(schemaType)
objType, ok := schemaType.(*schema.ObjectType)
if !ok {
return ""
}
token := objType.Token
tokenRange := expr.SyntaxNode().Range()
// Example: aws, s3/BucketLogging, BucketLogging, []Diagnostics
pkgName, module, member, diagnostics := pcl.DecomposeToken(token, tokenRange)
contract.Assertf(len(diagnostics) == 0, "unexpected diagnostics reported: %v", diagnostics)
modName := objType.PackageReference.TokenToModule(token)
// Normalize module.
pkg, err := objType.PackageReference.Definition()
contract.AssertNoErrorf(err, "error loading definition for package %q", objType.PackageReference.Name())
if lang, ok := pkg.Language["python"]; ok {
if pkgInfo, ok := lang.(PackageInfo); ok {
if m, ok := pkgInfo.ModuleNameOverrides[module]; ok {
modName = m
}
}
}
return tokenToQualifiedName(pkgName, modName, member) + "Args"
}
// makeResourceName returns the expression that should be emitted for a resource's "name" parameter given its base name
// and the count variable name, if any.
func (g *generator) makeResourceName(baseName, count string) string {
if count == "" {
if g.isComponent {
return fmt.Sprintf(`f"{name}-%s"`, baseName)
}
return fmt.Sprintf(`"%s"`, baseName)
}
if g.isComponent {
return fmt.Sprintf(`f"{name}-%s-{%s}"`, baseName, count)
}
return fmt.Sprintf(`f"%s-{%s}"`, baseName, count)
}
func (g *generator) lowerResourceOptions(opts *pcl.ResourceOptions) (*model.Block, []*quoteTemp) {
if opts == nil {
return nil, nil
}
var block *model.Block
var temps []*quoteTemp
appendOption := func(name string, value model.Expression) {
if block == nil {
block = &model.Block{
Type: "options",
Body: &model.Body{},
}
}
value, valueTemps := g.lowerExpression(value, value.Type())
temps = append(temps, valueTemps...)
block.Body.Items = append(block.Body.Items, &model.Attribute{
Tokens: syntax.NewAttributeTokens(name),
Name: name,
Value: value,
})
}
if opts.Parent != nil {
appendOption("parent", opts.Parent)
}
if opts.Provider != nil {
appendOption("provider", opts.Provider)
}
if opts.DependsOn != nil {
appendOption("depends_on", opts.DependsOn)
}
if opts.Protect != nil {
appendOption("protect", opts.Protect)
}
if opts.RetainOnDelete != nil {
appendOption("retain_on_delete", opts.RetainOnDelete)
}
if opts.IgnoreChanges != nil {
appendOption("ignore_changes", opts.IgnoreChanges)
}
if opts.DeletedWith != nil {
appendOption("deleted_with", opts.DeletedWith)
}
return block, temps
}
func (g *generator) genResourceOptions(w io.Writer, block *model.Block, hasInputs bool) {
if block == nil {
return
}
prefix := " "
if hasInputs {
prefix = "\n" + g.Indent
}
g.Fprintf(w, ",%sopts = pulumi.ResourceOptions(", prefix)
g.Indented(func() {
for i, item := range block.Body.Items {
if i > 0 {
g.Fprintf(w, ",\n%s", g.Indent)
}
attr := item.(*model.Attribute)
g.Fgenf(w, "%s=%v", attr.Name, attr.Value)
}
})
g.Fprint(w, ")")
}
// genResourceDeclaration handles the generation of instantiations resources.
func (g *generator) genResourceDeclaration(w io.Writer, r *pcl.Resource, needsDefinition bool) {
qualifiedMemberName, diagnostics := resourceTypeName(r)
g.diagnostics = append(g.diagnostics, diagnostics...)
optionsBag, temps := g.lowerResourceOptions(r.Options)
name := r.LogicalName()
nameVar := PyName(r.Name())
if needsDefinition {
g.genTrivia(w, r.Definition.Tokens.GetType(""))
for _, l := range r.Definition.Tokens.Labels {
g.genTrivia(w, l)
}
g.genTrivia(w, r.Definition.Tokens.GetOpenBrace())
}
if r.Schema != nil {
for _, input := range r.Inputs {
destType, diagnostics := r.InputType.Traverse(hcl.TraverseAttr{Name: input.Name})
g.diagnostics = append(g.diagnostics, diagnostics...)
value, valueTemps := g.lowerExpression(input.Value, destType.(model.Type))
temps = append(temps, valueTemps...)
input.Value = value
}
}
g.genTemps(w, temps)
instantiate := func(resName string) {
g.Fgenf(w, "%s(%s", qualifiedMemberName, resName)
indenter := func(f func()) { f() }
if len(r.Inputs) > 1 {
indenter = g.Indented
}
indenter(func() {
for _, attr := range r.Inputs {
propertyName := InitParamName(attr.Name)
// special case: pulumi.StackReference requires `stack_name` instead of `name`
if qualifiedMemberName == stackRefQualifiedName && propertyName == "name" {
propertyName = "stack_name"
}
if len(r.Inputs) == 1 {
g.Fgenf(w, ", %s=%.v", propertyName, attr.Value)
} else {
g.Fgenf(w, ",\n%s%s=%.v", g.Indent, propertyName, attr.Value)
}
}
g.genResourceOptions(w, optionsBag, len(r.Inputs) != 0)
})
g.Fprint(w, ")")
}
if r.Options != nil && r.Options.Range != nil {
rangeExpr := r.Options.Range
rangeType := r.Options.Range.Type()
if model.ContainsOutputs(rangeType) {
loweredRangeExpr, rangeExprTemps := g.lowerExpression(rangeExpr, rangeType)
if model.InputType(model.BoolType).ConversionFrom(r.Options.Range.Type()) == model.SafeConversion {
g.Fgenf(w, "%s%s = None\n", g.Indent, nameVar)
} else {
g.Fgenf(w, "%s%s = []\n", g.Indent, nameVar)
}
localFuncName := "create_" + PyName(r.LogicalName())
// Generate a local definition which actually creates the resources
g.Fgenf(w, "def %s(range_body):\n", localFuncName)
g.Indented(func() {
r.Options.Range = model.VariableReference(&model.Variable{
Name: "range_body",
VariableType: model.ResolveOutputs(rangeExpr.Type()),
})
g.genResourceDeclaration(w, r, false)
g.Fgen(w, "\n")
})
g.genTemps(w, rangeExprTemps)
switch expr := loweredRangeExpr.(type) {
case *model.FunctionCallExpression:
if expr.Name == pcl.IntrinsicApply {
applyArgs, applyLambda := pcl.ParseApplyCall(expr)
// Step 1: generate the apply function call:
if len(applyArgs) == 1 {
// If we only have a single output, just generate a normal `.apply`
g.Fgenf(w, "%v.apply(", applyArgs[0])
} else {
// Otherwise, generate a call to `pulumi.Output.all([]).apply()`.
g.Fgen(w, "pulumi.Output.all(\n")
g.Indented(func() {
for i, arg := range applyArgs {
argName := applyLambda.Signature.Parameters[i].Name
g.Fgenf(w, "%s%s=%v", g.Indent, argName, arg)
if i < len(applyArgs)-1 {
g.Fgen(w, ",")
}
g.Fgen(w, "\n")
}
})
g.Fgen(w, ").apply(")
}
// Step 2: apply lambda function arguments
g.Fgen(w, "lambda resolved_outputs:")
// Step 3: The function body is where the resources are generated:
// The function body is also a non-output value so we rewrite the range of
// the resource declaration to this non-output value
rewrittenLambdaBody := rewriteApplyLambdaBody(applyLambda, "resolved_outputs")
g.Fgenf(w, " %s(%.v))\n", localFuncName, rewrittenLambdaBody)
return
}
// If we have anything else that returns output, just generate a normal `.apply`
g.Fgenf(w, "%.20v.apply(%s)\n", loweredRangeExpr, localFuncName)
return
case *model.ForExpression:
// A list generator that contains outputs looks like list(output(T))
// when we pass that list into `Output.all` it returns a list with a single element,
// that element is another list of all resolved items
// that is why we index the resolved outputs at 0
g.Fgenf(w, "pulumi.Output.all(%v).apply(lambda resolved_outputs: %s(resolved_outputs[0]))\n",
rangeExpr,
localFuncName)
return
case *model.TupleConsExpression:
// A list that contains outputs looks like list(output(T))
// ideally we want this to be output(list(T)) and then call apply:
// so we call pulumi.all to lift the elements of the list, then call apply
g.Fgen(w, "pulumi.Output.all(\n")
g.Indented(func() {
for i, item := range expr.Expressions {
g.Fgenf(w, "%s%v", g.Indent, item)
if i < len(expr.Expressions)-1 {
g.Fgenf(w, ",")
}
g.Fgen(w, "\n")
}
})
g.Fgenf(w, ").apply(%s)\n", localFuncName)
return
default:
// If we have anything else that returns output, just generate a normal `.apply`
g.Fgenf(w, "%v.apply(%s)\n", rangeExpr, localFuncName)
return
}
}
if model.InputType(model.BoolType).ConversionFrom(r.Options.Range.Type()) == model.SafeConversion {
if needsDefinition {
g.Fgenf(w, "%s%s = None\n", g.Indent, nameVar)
}
g.Fgenf(w, "%sif %.v:\n", g.Indent, rangeExpr)
g.Indented(func() {
g.Fprintf(w, "%s%s = ", g.Indent, nameVar)
instantiate(g.makeResourceName(name, ""))
g.Fprint(w, "\n")
})
} else {
if needsDefinition {
g.Fgenf(w, "%s%s = []\n", g.Indent, nameVar)
}
resKey := "key"
if model.InputType(model.NumberType).ConversionFrom(rangeExpr.Type()) != model.NoConversion {
g.Fgenf(w, "%sfor range in [{\"value\": i} for i in range(0, %.v)]:\n", g.Indent, rangeExpr)
resKey = "value"
} else {
g.Fgenf(w, "%sfor range in [{\"key\": k, \"value\": v} for [k, v] in enumerate(%.v)]:\n", g.Indent, rangeExpr)
}
resName := g.makeResourceName(name, fmt.Sprintf("range['%s']", resKey))
g.Indented(func() {
g.Fgenf(w, "%s%s.append(", g.Indent, nameVar)
instantiate(resName)
g.Fprint(w, ")\n")
})
}
} else {
g.Fgenf(w, "%s%s = ", g.Indent, nameVar)
instantiate(g.makeResourceName(name, ""))
g.Fprint(w, "\n")
}
g.genTrivia(w, r.Definition.Tokens.GetCloseBrace())
}
// genResource handles the generation of instantiations of resources.
func (g *generator) genResource(w io.Writer, r *pcl.Resource) {
g.genResourceDeclaration(w, r, true)
}
// genComponent handles the generation of instantiations of non-builtin resources.
func (g *generator) genComponent(w io.Writer, r *pcl.Component) {
componentName := r.DeclarationName()
optionsBag, temps := g.lowerResourceOptions(r.Options)
name := r.LogicalName()
nameVar := PyName(r.Name())
g.genTrivia(w, r.Definition.Tokens.GetType(""))
for _, l := range r.Definition.Tokens.Labels {
g.genTrivia(w, l)
}
g.genTrivia(w, r.Definition.Tokens.GetOpenBrace())
for _, input := range r.Inputs {
value, valueTemps := g.lowerExpression(input.Value, input.Value.Type())
temps = append(temps, valueTemps...)
input.Value = value
}
g.genTemps(w, temps)
hasInputVariables := len(r.Program.ConfigVariables()) > 0
instantiate := func(resName string) {
if hasInputVariables {
g.Fgenf(w, "%s(%s, {\n", componentName, resName)
} else {
g.Fgenf(w, "%s(%s", componentName, resName)
}
indenter := func(f func()) { f() }
if len(r.Inputs) > 1 {
indenter = g.Indented
}
indenter(func() {
for index, attr := range r.Inputs {
propertyName := attr.Name
if len(r.Inputs) == 1 {
g.Fgenf(w, "'%s': %.v", propertyName, attr.Value)
} else {
g.Fgenf(w, "%s'%s': %.v", g.Indent, propertyName, attr.Value)
}
if index != len(r.Inputs)-1 {
// add comma after each input when that property is not the last
g.Fgen(w, ", ")
if len(r.Inputs) > 1 {
g.Fgen(w, "\n")
}
}
}
g.genResourceOptions(w, optionsBag, len(r.Inputs) != 0)
})
if hasInputVariables {
g.Fgenf(w, "%s})", g.Indent)
} else {
g.Fgen(w, ")")
}
}
if r.Options != nil && r.Options.Range != nil {
rangeExpr := r.Options.Range
if model.InputType(model.BoolType).ConversionFrom(r.Options.Range.Type()) == model.SafeConversion {
g.Fgenf(w, "%s%s = None\n", g.Indent, nameVar)
g.Fgenf(w, "%sif %.v:\n", g.Indent, rangeExpr)
g.Indented(func() {
g.Fprintf(w, "%s%s = ", g.Indent, nameVar)
instantiate(g.makeResourceName(name, ""))
g.Fprint(w, "\n")
})
} else {
g.Fgenf(w, "%s%s = []\n", g.Indent, nameVar)
resKey := "key"
if model.InputType(model.NumberType).ConversionFrom(rangeExpr.Type()) != model.NoConversion {
g.Fgenf(w, "%sfor range in [{\"value\": i} for i in range(0, %.v)]:\n", g.Indent, rangeExpr)
resKey = "value"
} else {
g.Fgenf(w, "%sfor range in [{\"key\": k, \"value\": v} for [k, v] in enumerate(%.v)]:\n", g.Indent, rangeExpr)
}
resName := g.makeResourceName(name, fmt.Sprintf("range['%s']", resKey))
g.Indented(func() {
g.Fgenf(w, "%s%s.append(", g.Indent, nameVar)
instantiate(resName)
g.Fprint(w, ")\n")
})
}
} else {
g.Fgenf(w, "%s%s = ", g.Indent, nameVar)
instantiate(g.makeResourceName(name, ""))
g.Fprint(w, "\n")
}
g.genTrivia(w, r.Definition.Tokens.GetCloseBrace())
}
func (g *generator) genTemps(w io.Writer, temps []*quoteTemp) {
for _, t := range temps {
// TODO(pdg): trivia
g.Fgenf(w, "%s%s = %.v\n", g.Indent, t.Name, t.Value)
}
}
func (g *generator) genConfigVariable(w io.Writer, v *pcl.ConfigVariable) {
// TODO(pdg): trivia
if !g.configCreated {
g.Fprintf(w, "%sconfig = pulumi.Config()\n", g.Indent)
g.configCreated = true
}
getType := "_object"
switch v.Type() {
case model.StringType:
getType = ""
case model.NumberType:
getType = "_float"
case model.IntType:
getType = "_int"
case model.BoolType:
getType = "_bool"
}
getOrRequire := "get"
if v.DefaultValue == nil {
getOrRequire = "require"
}
var defaultValue model.Expression
var temps []*quoteTemp
if v.DefaultValue != nil {
defaultValue, temps = g.lowerExpression(v.DefaultValue, v.DefaultValue.Type())
}
g.genTemps(w, temps)
if v.Description != "" {
for _, line := range strings.Split(v.Description, "\n") {
g.Fgenf(w, "%s# %s\n", g.Indent, line)
}
}
name := PyName(v.Name())
g.Fgenf(w, "%s%s = config.%s%s(\"%s\")\n", g.Indent, name, getOrRequire, getType, v.LogicalName())
if defaultValue != nil {
g.Fgenf(w, "%sif %s is None:\n", g.Indent, name)
g.Indented(func() {
g.Fgenf(w, "%s%s = %.v\n", g.Indent, name, defaultValue)
})
}
}
func (g *generator) genLocalVariable(w io.Writer, v *pcl.LocalVariable) {
value, temps := g.lowerExpression(v.Definition.Value, v.Type())
g.genTemps(w, temps)
g.genTrivia(w, v.Definition.Tokens.Name)
g.Fgenf(w, "%s%s = %.v\n", g.Indent, PyName(v.Name()), value)
}
func (g *generator) genOutputVariable(w io.Writer, v *pcl.OutputVariable) {
value, temps := g.lowerExpression(v.Value, v.Type())
g.genTemps(w, temps)
// TODO(pdg): trivia
g.Fgenf(w, "%spulumi.export(\"%s\", %.v)\n", g.Indent, v.LogicalName(), value)
}
func (g *generator) genNYI(w io.Writer, reason string, vs ...interface{}) {
message := "not yet implemented: " + fmt.Sprintf(reason, vs...)
g.diagnostics = append(g.diagnostics, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: message,
Detail: message,
})
g.Fgenf(w, "(lambda: raise Exception(%q))()", fmt.Sprintf(reason, vs...))
}