pulumi/pkg/resource/graph/dependency_graph.go

352 lines
13 KiB
Go

// Copyright 2016-2021, Pulumi Corporation. All rights reserved.
package graph
import (
mapset "github.com/deckarep/golang-set/v2"
"github.com/pulumi/pulumi/pkg/v3/resource/deploy/providers"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
)
// DependencyGraph represents a dependency graph encoded within a resource snapshot.
type DependencyGraph struct {
index map[*resource.State]int // A mapping of resource pointers to indexes within the snapshot
resources []*resource.State // The list of resources, obtained from the snapshot
childrenOf map[resource.URN][]int // Pre-computed map of transitive children for each resource
}
// DependingOn returns a slice containing all resources that directly or indirectly
// depend upon the given resource. The returned slice is guaranteed to be in topological
// order with respect to the snapshot dependency graph.
//
// The time complexity of DependingOn is linear with respect to the number of resources.
//
// includeChildren adds children as another type of (transitive) dependency.
func (dg *DependencyGraph) DependingOn(res *resource.State,
ignore map[resource.URN]bool, includeChildren bool,
) []*resource.State {
// This implementation relies on the detail that snapshots are stored in a valid
// topological order.
var dependents []*resource.State
dependentSet := make(map[resource.URN]bool)
cursorIndex, ok := dg.index[res]
contract.Assertf(ok, "could not determine index for resource %s", res.URN)
dependentSet[res.URN] = true
isDependent := func(candidate *resource.State) bool {
if ignore[candidate.URN] {
return false
}
if includeChildren && dependentSet[candidate.Parent] {
return true
}
for _, dependency := range candidate.Dependencies {
if dependentSet[dependency] {
return true
}
}
for _, deps := range candidate.PropertyDependencies {
for _, dep := range deps {
if dependentSet[dep] {
return true
}
}
}
if candidate.DeletedWith != "" && dependentSet[candidate.DeletedWith] {
return true
}
if candidate.Provider != "" {
ref, err := providers.ParseReference(candidate.Provider)
contract.AssertNoErrorf(err, "cannot parse provider reference %q", candidate.Provider)
if dependentSet[ref.URN()] {
return true
}
}
return false
}
// The dependency graph encoded directly within the snapshot is the reverse of
// the graph that we actually want to operate upon. Edges in the snapshot graph
// originate in a resource and go to that resource's dependencies.
//
// The `DependingOn` is simpler when operating on the reverse of the snapshot graph,
// where edges originate in a resource and go to resources that depend on that resource.
// In this graph, `DependingOn` for a resource is the set of resources that are reachable from the
// given resource.
//
// To accomplish this without building up an entire graph data structure, we'll do a linear
// scan of the resource list starting at the requested resource and ending at the end of
// the list. All resources that depend directly or indirectly on `res` are prepended
// onto `dependents`.
for i := cursorIndex + 1; i < len(dg.resources); i++ {
candidate := dg.resources[i]
if isDependent(candidate) {
dependents = append(dependents, candidate)
dependentSet[candidate.URN] = true
}
}
return dependents
}
// OnlyDependsOn returns a slice containing all resources that directly or indirectly
// depend upon *only* the given resource. Resources that also depend on another resource with
// the same URN will not be included in the returned slice. The returned slice is guaranteed
// to be in topological order with respect to the snapshot dependency graph.
//
// The time complexity of OnlyDependsOn is linear with respect to the number of resources.
func (dg *DependencyGraph) OnlyDependsOn(res *resource.State) []*resource.State {
// This implementation relies on the detail that snapshots are stored in a valid
// topological order.
var dependents []*resource.State
dependentSet := make(map[resource.URN][]resource.ID)
nonDependentSet := make(map[resource.URN][]resource.ID)
cursorIndex, ok := dg.index[res]
contract.Assertf(ok, "could not determine index for resource %s", res.URN)
dependentSet[res.URN] = []resource.ID{res.ID}
isDependent := func(candidate *resource.State) bool {
if res.URN == candidate.URN && res.ID == candidate.ID {
return false
}
if len(dependentSet[candidate.Parent]) > 0 && len(nonDependentSet[candidate.Parent]) == 0 {
return true
}
for _, dependency := range candidate.Dependencies {
if len(dependentSet[dependency]) == 1 && len(nonDependentSet[dependency]) == 0 {
return true
}
}
for _, deps := range candidate.PropertyDependencies {
for _, dep := range deps {
if len(dependentSet[dep]) == 1 && len(nonDependentSet[dep]) == 0 {
return true
}
}
}
if candidate.DeletedWith != "" {
if len(dependentSet[candidate.DeletedWith]) == 1 && len(nonDependentSet[candidate.DeletedWith]) == 0 {
return true
}
}
if candidate.Provider != "" {
ref, err := providers.ParseReference(candidate.Provider)
contract.AssertNoErrorf(err, "cannot parse provider reference %q", candidate.Provider)
for _, id := range dependentSet[ref.URN()] {
if id == ref.ID() {
return true
}
}
}
return false
}
// The dependency graph encoded directly within the snapshot is the reverse of
// the graph that we actually want to operate upon. Edges in the snapshot graph
// originate in a resource and go to that resource's dependencies.
//
// The `OnlyDependsOn` is simpler when operating on the reverse of the snapshot graph,
// where edges originate in a resource and go to resources that depend on that resource.
// In this graph, `OnlyDependsOn` for a resource is the set of resources that are reachable from the
// given resource, and only from the given resource.
//
// To accomplish this without building up an entire graph data structure, we'll do a linear
// scan of the resource list starting at the requested resource and ending at the end of
// the list. All resources that depend directly or indirectly on `res` are prepended
// onto `dependents`.
//
// We also walk through the the list of resources before the requested resource, as resources
// sorted later could still be dependent on the requested resource.
for i := 0; i < cursorIndex; i++ {
candidate := dg.resources[i]
nonDependentSet[candidate.URN] = append(nonDependentSet[candidate.URN], candidate.ID)
}
for i := cursorIndex + 1; i < len(dg.resources); i++ {
candidate := dg.resources[i]
if isDependent(candidate) {
dependents = append(dependents, candidate)
dependentSet[candidate.URN] = append(dependentSet[candidate.URN], candidate.ID)
} else {
nonDependentSet[candidate.URN] = append(nonDependentSet[candidate.URN], candidate.ID)
}
}
return dependents
}
// DependenciesOf returns a set of resources upon which the given resource
// depends directly. This includes the resource's provider, parent, any
// resources in the `Dependencies` list, any resources in the
// `PropertyDependencies` map, and any resource referenced by the `DeletedWith`
// field.
func (dg *DependencyGraph) DependenciesOf(res *resource.State) mapset.Set[*resource.State] {
set := mapset.NewSet[*resource.State]()
dependentUrns := make(map[resource.URN]bool)
for _, dep := range res.Dependencies {
dependentUrns[dep] = true
}
for _, deps := range res.PropertyDependencies {
for _, dep := range deps {
dependentUrns[dep] = true
}
}
if res.DeletedWith != "" {
dependentUrns[res.DeletedWith] = true
}
if res.Provider != "" {
ref, err := providers.ParseReference(res.Provider)
contract.AssertNoErrorf(err, "cannot parse provider reference %q", res.Provider)
dependentUrns[ref.URN()] = true
}
cursorIndex, ok := dg.index[res]
contract.Assertf(ok, "could not determine index for resource %s", res.URN)
for i := cursorIndex - 1; i >= 0; i-- {
candidate := dg.resources[i]
// Include all resources that are dependencies of the resource
if dependentUrns[candidate.URN] {
set.Add(candidate)
// If the dependency is a component, all transitive children of the dependency that are before this
// resource in the topological sort are also implicitly dependencies. This is necessary because for remote
// components, the dependencies will not include the transitive set of children directly, but will include
// the parent component. We must walk that component's children here to ensure they are treated as
// dependencies. Transitive children of the dependency that are after the resource in the topological sort
// are not included as this could lead to cycles in the dependency order.
if !candidate.Custom {
for _, transitiveCandidateIndex := range dg.childrenOf[candidate.URN] {
if transitiveCandidateIndex < cursorIndex {
set.Add(dg.resources[transitiveCandidateIndex])
}
}
}
}
// Include the resource's parent, as the resource depends on it's parent existing.
if candidate.URN == res.Parent {
set.Add(candidate)
}
}
return set
}
// Contains returns whether the given resource is in the dependency graph.
func (dg *DependencyGraph) Contains(res *resource.State) bool {
_, ok := dg.index[res]
return ok
}
// `TransitiveDependenciesOf` calculates the set of resources upon which the
// given resource depends, directly or indirectly. This includes the resource's
// provider, parent, any resources in the `Dependencies` list, any resources in
// the `PropertyDependencies` map, and any resource referenced by the
// `DeletedWith` field.
//
// This function is linear in the number of resources in the `DependencyGraph`.
func (dg *DependencyGraph) TransitiveDependenciesOf(r *resource.State) mapset.Set[*resource.State] {
dependentProviders := make(map[resource.URN]struct{})
urns := make(map[resource.URN]*node, len(dg.resources))
for _, r := range dg.resources {
urns[r.URN] = &node{resource: r}
}
// Linearity is due to short circuiting in the traversal.
markAsDependency(r.URN, urns, dependentProviders)
// This will only trigger if (urn, node) is a provider. The check is implicit
// in the set lookup.
for urn := range urns {
if _, ok := dependentProviders[urn]; ok {
markAsDependency(urn, urns, dependentProviders)
}
}
dependencies := mapset.NewSet[*resource.State]()
for _, r := range urns {
if r.marked {
dependencies.Add(r.resource)
}
}
// We don't want to include `r` as its own dependency.
dependencies.Remove(r)
return dependencies
}
// ChildrenOf returns a slice containing all resources that are children of the given resource.
func (dg *DependencyGraph) ChildrenOf(res *resource.State) []*resource.State {
children := make([]*resource.State, 0)
for _, childIndex := range dg.childrenOf[res.URN] {
children = append(children, dg.resources[childIndex])
}
return children
}
// Mark a resource and its provider, parent, dependencies, property
// dependencies, and deletion dependencies, as a dependency. This is a helper
// function for `TransitiveDependenciesOf`.
func markAsDependency(urn resource.URN, urns map[resource.URN]*node, dependedProviders map[resource.URN]struct{}) {
r := urns[urn]
for {
r.marked = true
if r.resource.Provider != "" {
ref, err := providers.ParseReference(r.resource.Provider)
contract.AssertNoErrorf(err, "cannot parse provider reference %q", r.resource.Provider)
dependedProviders[ref.URN()] = struct{}{}
}
for _, dep := range r.resource.Dependencies {
markAsDependency(dep, urns, dependedProviders)
}
for _, deps := range r.resource.PropertyDependencies {
for _, dep := range deps {
markAsDependency(dep, urns, dependedProviders)
}
}
if r.resource.DeletedWith != "" {
markAsDependency(r.resource.DeletedWith, urns, dependedProviders)
}
// If the resource's parent is already marked, we don't need to continue to
// traverse. All nodes above its parent will have already been marked. This
// is a property of the set of resources being topologically sorted.
if p, ok := urns[r.resource.Parent]; ok && !p.marked {
r = p
} else {
break
}
}
}
// NewDependencyGraph creates a new DependencyGraph from a list of resources.
// The resources should be in topological order with respect to their dependencies, including
// parents appearing before children.
func NewDependencyGraph(resources []*resource.State) *DependencyGraph {
index := make(map[*resource.State]int)
childrenOf := make(map[resource.URN][]int)
urnIndex := make(map[resource.URN]int)
for idx, res := range resources {
index[res] = idx
urnIndex[res.URN] = idx
parent := res.Parent
for parent != "" {
childrenOf[parent] = append(childrenOf[parent], idx)
parent = resources[urnIndex[parent]].Parent
}
}
return &DependencyGraph{index, resources, childrenOf}
}
// A node in a graph.
type node struct {
marked bool
resource *resource.State
}