pulumi/pkg/codegen/python/gen_program_expressions.go

801 lines
23 KiB
Go

// Copyright 2020-2024, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package python
import (
"bufio"
"bytes"
"fmt"
"io"
"math/big"
"strings"
"unicode"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/zclconf/go-cty/cty"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/pcl"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
)
type nameInfo int
func (nameInfo) Format(name string) string {
return PyName(name)
}
func (g *generator) lowerExpression(expr model.Expression, typ model.Type) (model.Expression, []*quoteTemp) {
// TODO(pdg): diagnostics
expr = pcl.RewritePropertyReferences(expr)
skipToJSONWhenRewritingApplies := true
expr, diags := pcl.RewriteAppliesWithSkipToJSON(expr, nameInfo(0), false, skipToJSONWhenRewritingApplies)
expr, lowerProxyDiags := g.lowerProxyApplies(expr)
expr, convertDiags := pcl.RewriteConversions(expr, typ)
expr, quotes, quoteDiags := g.rewriteQuotes(expr)
diags = diags.Extend(lowerProxyDiags)
diags = diags.Extend(convertDiags)
diags = diags.Extend(quoteDiags)
g.diagnostics = g.diagnostics.Extend(diags)
return expr, quotes
}
func (g *generator) GetPrecedence(expr model.Expression) int {
// Precedence is taken from https://docs.python.org/3/reference/expressions.html#operator-precedence.
switch expr := expr.(type) {
case *model.AnonymousFunctionExpression:
return 1
case *model.ConditionalExpression:
return 2
case *model.BinaryOpExpression:
switch expr.Operation {
case hclsyntax.OpLogicalOr:
return 3
case hclsyntax.OpLogicalAnd:
return 4
case hclsyntax.OpGreaterThan, hclsyntax.OpGreaterThanOrEqual, hclsyntax.OpLessThan, hclsyntax.OpLessThanOrEqual,
hclsyntax.OpEqual, hclsyntax.OpNotEqual:
return 6
case hclsyntax.OpAdd, hclsyntax.OpSubtract:
return 11
case hclsyntax.OpMultiply, hclsyntax.OpDivide, hclsyntax.OpModulo:
return 12
default:
contract.Failf("unexpected binary expression %v", expr)
}
case *model.UnaryOpExpression:
return 13
case *model.FunctionCallExpression, *model.IndexExpression, *model.RelativeTraversalExpression,
*model.TemplateJoinExpression:
return 16
case *model.ForExpression, *model.ObjectConsExpression, *model.SplatExpression, *model.TupleConsExpression:
return 17
case *model.LiteralValueExpression, *model.ScopeTraversalExpression, *model.TemplateExpression:
return 18
default:
contract.Failf("unexpected expression %v of type %T", expr, expr)
}
return 0
}
func (g *generator) GenAnonymousFunctionExpression(w io.Writer, expr *model.AnonymousFunctionExpression) {
g.Fgen(w, "lambda")
for i, p := range expr.Signature.Parameters {
if i > 0 {
g.Fgen(w, ",")
}
g.Fgenf(w, " %s", PyName(p.Name))
}
g.Fgenf(w, ": %.v", expr.Body)
}
func (g *generator) GenBinaryOpExpression(w io.Writer, expr *model.BinaryOpExpression) {
var opstr string
precedence := g.GetPrecedence(expr)
switch expr.Operation {
case hclsyntax.OpAdd:
opstr = "+"
case hclsyntax.OpDivide:
opstr = "/"
case hclsyntax.OpEqual:
opstr = "=="
case hclsyntax.OpGreaterThan:
opstr = ">"
case hclsyntax.OpGreaterThanOrEqual:
opstr = ">="
case hclsyntax.OpLessThan:
opstr = "<"
case hclsyntax.OpLessThanOrEqual:
opstr = "<="
case hclsyntax.OpLogicalAnd:
opstr = "and"
case hclsyntax.OpLogicalOr:
opstr = "or"
case hclsyntax.OpModulo:
opstr = "%"
case hclsyntax.OpMultiply:
opstr = "*"
case hclsyntax.OpNotEqual:
opstr = "!="
case hclsyntax.OpSubtract:
opstr = "-"
default:
opstr, precedence = ",", 0
}
g.Fgenf(w, "%.[1]*[2]v %[3]v %.[1]*[4]o", precedence, expr.LeftOperand, opstr, expr.RightOperand)
}
func (g *generator) GenConditionalExpression(w io.Writer, expr *model.ConditionalExpression) {
g.Fgenf(w, "%.2v if %.2v else %.2v", expr.TrueResult, expr.Condition, expr.FalseResult)
}
func (g *generator) GenForExpression(w io.Writer, expr *model.ForExpression) {
closedelim := "]"
if expr.Key != nil {
// Dictionary comprehension
//
// TODO(pdg): grouping
g.Fgenf(w, "{%.v: %.v", expr.Key, expr.Value)
closedelim = "}"
} else {
// List comprehension
g.Fgenf(w, "[%.v", expr.Value)
}
if expr.KeyVariable == nil {
g.Fgenf(w, " for %v in %.v", expr.ValueVariable.Name, expr.Collection)
} else {
g.Fgenf(w, " for %v, %v in %.v", expr.KeyVariable.Name, expr.ValueVariable.Name, expr.Collection)
}
if expr.Condition != nil {
g.Fgenf(w, " if %.v", expr.Condition)
}
g.Fprint(w, closedelim)
}
func (g *generator) genApply(w io.Writer, expr *model.FunctionCallExpression) {
// Extract the list of outputs and the continuation expression from the `__apply` arguments.
applyArgs, then := pcl.ParseApplyCall(expr)
if len(applyArgs) == 1 {
// If we only have a single output, just generate a normal `.apply`.
g.Fgenf(w, "%.16v.apply(%.v)", applyArgs[0], then)
} else {
// Otherwise, generate a call to `pulumi.all([]).apply()`.
g.Fgen(w, "pulumi.Output.all(\n")
g.Indented(func() {
for i, arg := range applyArgs {
argName := then.Signature.Parameters[i].Name
g.Fgenf(w, "%s%s=%v", g.Indent, argName, arg)
if i < len(applyArgs)-1 {
g.Fgen(w, ",")
}
g.Fgen(w, "\n")
}
})
g.Fgen(w, ").apply(lambda resolved_outputs: ")
rewrittenLambdaBody := rewriteApplyLambdaBody(then, "resolved_outputs")
g.Fgenf(w, "%.v)\n", rewrittenLambdaBody)
}
}
// functionName computes the Python package, module, and name for the given function token.
func functionName(tokenArg model.Expression) (string, string, string, hcl.Diagnostics) {
token := tokenArg.(*model.TemplateExpression).Parts[0].(*model.LiteralValueExpression).Value.AsString()
tokenRange := tokenArg.SyntaxNode().Range()
// Compute the resource type from the Pulumi type token.
pkg, module, member, diagnostics := pcl.DecomposeToken(token, tokenRange)
return makeValidIdentifier(pkg), strings.ReplaceAll(module, "/", "."), title(member), diagnostics
}
var functionImports = map[string][]string{
"fileArchive": {"pulumi"},
"remoteArchive": {"pulumi"},
"assetArchive": {"pulumi"},
"fileAsset": {"pulumi"},
"stringAsset": {"pulumi"},
"remoteAsset": {"pulumi"},
"filebase64": {"base64"},
"filebase64sha256": {"base64", "hashlib"},
"readDir": {"os"},
"toBase64": {"base64"},
"fromBase64": {"base64"},
"toJSON": {"json"},
"sha1": {"hashlib"},
"stack": {"pulumi"},
"project": {"pulumi"},
"organization": {"pulumi"},
"cwd": {"os"},
"mimeType": {"mimetypes"},
}
func (g *generator) getFunctionImports(x *model.FunctionCallExpression) []string {
if x.Name != pcl.Invoke {
return functionImports[x.Name]
}
pkg, _, _, diags := functionName(x.Args[0])
contract.Assertf(len(diags) == 0, "unexpected diagnostics: %v", diags)
return []string{"pulumi_" + pkg}
}
func (g *generator) GenFunctionCallExpression(w io.Writer, expr *model.FunctionCallExpression) {
switch expr.Name {
case pcl.IntrinsicConvert:
from := expr.Args[0]
to := pcl.LowerConversion(from, expr.Signature.ReturnType)
output, isOutput := to.(*model.OutputType)
if isOutput {
to = output.ElementType
}
switch to := to.(type) {
case *model.EnumType:
components := strings.Split(to.Token, ":")
contract.Assertf(len(components) == 3, "malformed token %v", to.Token)
enum, ok := pcl.GetSchemaForType(to)
if !ok {
// No schema was provided
g.Fgenf(w, "%.v", expr.Args[0])
return
}
var moduleNameOverrides map[string]string
if pkg, err := enum.(*schema.EnumType).PackageReference.Definition(); err == nil {
if pkgInfo, ok := pkg.Language["python"].(PackageInfo); ok {
moduleNameOverrides = pkgInfo.ModuleNameOverrides
}
}
pkg := strings.ReplaceAll(components[0], "-", "_")
enumName := tokenToName(to.Token)
if m := tokenToModule(to.Token, nil, moduleNameOverrides); m != "" {
modParts := strings.Split(m, "/")
if len(modParts) == 2 && strings.EqualFold(modParts[1], enumName) {
m = modParts[0]
}
pkg += "." + strings.ReplaceAll(m, "/", ".")
}
if isOutput {
g.Fgenf(w, "%.v.apply(lambda x: %s.%s(x))", from, pkg, enumName)
} else {
diag := pcl.GenEnum(to, from, func(member *schema.Enum) {
tag := member.Name
if tag == "" {
tag = fmt.Sprintf("%v", member.Value)
}
tag, err := makeSafeEnumName(tag, enumName)
contract.AssertNoErrorf(err, "error sanitizing enum name")
g.Fgenf(w, "%s.%s.%s", pkg, enumName, tag)
}, func(from model.Expression) {
g.Fgenf(w, "%s.%s(%.v)", pkg, enumName, from)
})
if diag != nil {
g.diagnostics = append(g.diagnostics, diag)
}
}
default:
switch arg := from.(type) {
case *model.ObjectConsExpression:
g.genObjectConsExpression(w, arg, expr.Type())
default:
g.Fgenf(w, "%.v", expr.Args[0])
}
}
case pcl.IntrinsicApply:
g.genApply(w, expr)
case "element":
g.Fgenf(w, "%.16v[%.v]", expr.Args[0], expr.Args[1])
case "entries":
g.Fgenf(w, `[{"key": k, "value": v} for k, v in %.v]`, expr.Args[0])
case "fileArchive":
g.Fgenf(w, "pulumi.FileArchive(%.v)", expr.Args[0])
case "remoteArchive":
g.Fgenf(w, "pulumi.RemoteArchive(%.v)", expr.Args[0])
case "assetArchive":
g.Fgenf(w, "pulumi.AssetArchive(%.v)", expr.Args[0])
case "fileAsset":
g.Fgenf(w, "pulumi.FileAsset(%.v)", expr.Args[0])
case "stringAsset":
g.Fgenf(w, "pulumi.StringAsset(%.v)", expr.Args[0])
case "remoteAsset":
g.Fgenf(w, "pulumi.RemoteAsset(%.v)", expr.Args[0])
case "filebase64":
g.Fgenf(w, "(lambda path: base64.b64encode(open(path).read().encode()).decode())(%.v)", expr.Args[0])
case "filebase64sha256":
// Assuming the existence of the following helper method
g.Fgenf(w, "computeFilebase64sha256(%v)", expr.Args[0])
case "notImplemented":
g.Fgenf(w, "not_implemented(%v)", expr.Args[0])
case "singleOrNone":
g.Fgenf(w, "single_or_none(%v)", expr.Args[0])
case "mimeType":
g.Fgenf(w, "mimetypes.guess_type(%v)[0]", expr.Args[0])
case pcl.Call:
self := expr.Args[0]
method := expr.Args[1].(*model.TemplateExpression).Parts[0].(*model.LiteralValueExpression).Value.AsString()
if expr.Signature.MultiArgumentInputs {
err := fmt.Errorf("python program-gen does not implement MultiArgumentInputs for method '%s'", method)
panic(err)
}
validMethod := makeValidIdentifier(method)
g.Fgenf(w, "%v.%s(", self, validMethod)
var args *model.ObjectConsExpression
if converted, objectArgs, _ := pcl.RecognizeTypedObjectCons(expr.Args[2]); converted {
args = objectArgs
} else {
args = expr.Args[2].(*model.ObjectConsExpression)
}
if len(args.Items) > 0 {
indenter := func(f func()) { f() }
if len(args.Items) > 1 {
indenter = g.Indented
}
indenter(func() {
for i, item := range args.Items {
// Ignore non-literal keys
key, ok := item.Key.(*model.LiteralValueExpression)
if !ok || !key.Value.Type().Equals(cty.String) {
continue
}
keyVal := PyName(key.Value.AsString())
if i == 0 {
g.Fgenf(w, "%s=%.v", keyVal, item.Value)
} else {
g.Fgenf(w, ",\n%s%s=%.v", g.Indent, keyVal, item.Value)
}
}
})
}
g.Fprint(w, ")")
case pcl.Invoke:
if expr.Signature.MultiArgumentInputs {
err := fmt.Errorf("python program-gen does not implement MultiArgumentInputs for function '%v'",
expr.Args[0])
panic(err)
}
pkg, module, fn, diags := functionName(expr.Args[0])
contract.Assertf(len(diags) == 0, "unexpected diagnostics: %v", diags)
if module != "" {
module = "." + module
}
name := fmt.Sprintf("%s%s.%s", pkg, module, PyName(fn))
isOut := pcl.IsOutputVersionInvokeCall(expr)
if isOut {
name = name + "_output"
}
if len(expr.Args) == 1 {
g.Fprintf(w, "%s()", name)
return
}
optionsBag := ""
if len(expr.Args) == 3 {
var buf bytes.Buffer
if invokeOptions, ok := expr.Args[2].(*model.ObjectConsExpression); ok {
if isOut {
g.Fgen(&buf, ", opts=pulumi.InvokeOutputOptions(")
} else {
g.Fgen(&buf, ", opts=pulumi.InvokeOptions(")
}
for i, item := range invokeOptions.Items {
last := i == len(invokeOptions.Items)-1
key := PyName(pcl.LiteralValueString(item.Key))
g.Fgenf(&buf, "%s=%v", key, item.Value)
if !last {
g.Fgen(&buf, ", ")
}
}
g.Fgen(&buf, ")")
}
optionsBag = buf.String()
}
g.Fgenf(w, "%s(", name)
genFuncArgs := func(objectExpr *model.ObjectConsExpression) {
indenter := func(f func()) { f() }
if len(objectExpr.Items) > 1 {
indenter = g.Indented
}
indenter(func() {
for i, item := range objectExpr.Items {
// Ignore non-literal keys
key, ok := item.Key.(*model.LiteralValueExpression)
if !ok || !key.Value.Type().Equals(cty.String) {
continue
}
keyVal := PyName(key.Value.AsString())
if i == 0 {
g.Fgenf(w, "%s=%.v", keyVal, item.Value)
} else {
g.Fgenf(w, ",\n%s%s=%.v", g.Indent, keyVal, item.Value)
}
}
})
}
switch arg := expr.Args[1].(type) {
case *model.FunctionCallExpression:
if argsObject, ok := arg.Args[0].(*model.ObjectConsExpression); ok {
genFuncArgs(argsObject)
}
case *model.ObjectConsExpression:
genFuncArgs(arg)
}
g.Fgenf(w, "%v)", optionsBag)
case "join":
g.Fgenf(w, "%.16v.join(%v)", expr.Args[0], expr.Args[1])
case "length":
g.Fgenf(w, "len(%.v)", expr.Args[0])
case "lookup":
if len(expr.Args) == 3 {
g.Fgenf(w, "(lambda v, def: v if v is not None else def)(%.16v[%.v], %.v)",
expr.Args[0], expr.Args[1], expr.Args[2])
} else {
g.Fgenf(w, "%.16v[%.v]", expr.Args[0], expr.Args[1])
}
case "range":
g.Fprint(w, "range(")
for i, arg := range expr.Args {
if i > 0 {
g.Fprint(w, ", ")
}
g.Fgenf(w, "%.v", arg)
}
g.Fprint(w, ")")
case "readFile":
g.Fgenf(w, "(lambda path: open(path).read())(%.v)", expr.Args[0])
case "readDir":
g.Fgenf(w, "os.listdir(%.v)", expr.Args[0])
case "secret":
g.Fgenf(w, "pulumi.Output.secret(%v)", expr.Args[0])
case "unsecret":
g.Fgenf(w, "pulumi.Output.unsecret(%v)", expr.Args[0])
case "split":
g.Fgenf(w, "%.16v.split(%.v)", expr.Args[1], expr.Args[0])
case "toBase64":
g.Fgenf(w, "base64.b64encode(%.16v.encode()).decode()", expr.Args[0])
case "fromBase64":
g.Fgenf(w, "base64.b64decode(%.16v.encode()).decode()", expr.Args[0])
case "toJSON":
if model.ContainsOutputs(expr.Args[0].Type()) {
g.Fgenf(w, "pulumi.Output.json_dumps(%.v)", expr.Args[0])
} else {
g.Fgenf(w, "json.dumps(%.v)", expr.Args[0])
}
case "sha1":
g.Fgenf(w, "hashlib.sha1(%v.encode()).hexdigest()", expr.Args[0])
case "project":
g.Fgen(w, "pulumi.get_project()")
case "stack":
g.Fgen(w, "pulumi.get_stack()")
case "organization":
g.Fgen(w, "pulumi.get_organization()")
case "cwd":
g.Fgen(w, "os.getcwd()")
case "getOutput":
g.Fgenf(w, "%v.get_output(%v)", expr.Args[0], expr.Args[1])
default:
var rng hcl.Range
if expr.Syntax != nil {
rng = expr.Syntax.Range()
}
g.genNYI(w, "FunctionCallExpression: %v (%v)", expr.Name, rng)
}
}
func (g *generator) GenIndexExpression(w io.Writer, expr *model.IndexExpression) {
g.Fgenf(w, "%.16v[%.v]", expr.Collection, expr.Key)
}
type runeWriter interface {
WriteRune(c rune) (int, error)
}
func escapeRune(c rune) string {
if c < 0xFF {
return fmt.Sprintf("\\x%02x", c)
} else if c < 0xFFFF {
return fmt.Sprintf("\\u%04x", c)
}
return fmt.Sprintf("\\U%08x", c)
}
//nolint:errcheck
func (g *generator) genEscapedString(w runeWriter, v string, escapeNewlines, escapeBraces bool) {
for _, c := range v {
switch c {
case '\n':
if escapeNewlines {
w.WriteRune('\\')
w.WriteRune('n')
} else {
w.WriteRune(c)
}
continue
case '"', '\\':
if escapeNewlines {
w.WriteRune('\\')
w.WriteRune(c)
continue
}
case '{', '}':
if escapeBraces {
w.WriteRune(c)
w.WriteRune(c)
continue
}
}
if unicode.IsPrint(c) {
w.WriteRune(c)
continue
}
// This is a non-printable character. We'll emit a Python escape sequence for it.
codepoint := escapeRune(c)
for _, r := range codepoint {
w.WriteRune(r)
}
}
}
func (g *generator) genStringLiteral(w io.Writer, quotes, v string) {
builder := &strings.Builder{}
builder.WriteString(quotes)
escapeNewlines := quotes == `"` || quotes == `'`
g.genEscapedString(builder, v, escapeNewlines, false)
builder.WriteString(quotes)
g.Fgenf(w, "%s", builder.String())
}
func (g *generator) GenLiteralValueExpression(w io.Writer, expr *model.LiteralValueExpression) {
typ := expr.Type()
if cns, ok := typ.(*model.ConstType); ok {
typ = cns.Type
}
switch typ {
case model.BoolType:
if expr.Value.True() {
g.Fgen(w, "True")
} else {
g.Fgen(w, "False")
}
case model.NoneType:
g.Fgen(w, "None")
case model.NumberType:
bf := expr.Value.AsBigFloat()
if i, acc := bf.Int64(); acc == big.Exact {
g.Fgenf(w, "%d", i)
} else {
f, _ := bf.Float64()
g.Fgenf(w, "%g", f)
}
case model.StringType:
quotes := g.quotes[expr]
g.genStringLiteral(w, quotes, expr.Value.AsString())
default:
contract.Failf("unexpected literal type in GenLiteralValueExpression: %v (%v)", expr.Type(),
expr.SyntaxNode().Range())
}
}
func (g *generator) GenObjectConsExpression(w io.Writer, expr *model.ObjectConsExpression) {
g.genObjectConsExpression(w, expr, expr.Type())
}
func objectKey(item model.ObjectConsItem) string {
switch key := item.Key.(type) {
case *model.LiteralValueExpression:
return key.Value.AsString()
case *model.TemplateExpression:
// assume a template expression has one constant part that is a LiteralValueExpression
if len(key.Parts) == 1 {
if literal, ok := key.Parts[0].(*model.LiteralValueExpression); ok {
return literal.Value.AsString()
}
}
}
return ""
}
func (g *generator) genObjectConsExpression(w io.Writer, expr *model.ObjectConsExpression, destType model.Type) {
targetType := pcl.LowerConversion(expr, destType)
typeName := g.argumentTypeName(expr, targetType) // Example: aws.s3.BucketLoggingArgs
td := g.typedDictEnabled(expr, targetType)
if typeName != "" && !td {
// If a typeName exists, and it's not for a typedDict, treat this as an Input Class
// e.g. aws.s3.BucketLoggingArgs(key="value", foo="bar", ...)
if len(expr.Items) == 0 {
g.Fgenf(w, "%s()", typeName)
} else {
g.Fgenf(w, "%s(\n", typeName)
g.Indented(func() {
for _, item := range expr.Items {
g.Fgenf(w, "%s", g.Indent)
propertyKey := objectKey(item)
g.Fprint(w, PyName(propertyKey))
g.Fgenf(w, "=%.v,\n", item.Value)
}
})
g.Fgenf(w, "%s)", g.Indent)
}
} else {
// Otherwise treat this as a typed or untyped dictionary e.g. {"key": "value", "foo": "bar", ...}
if len(expr.Items) == 0 {
g.Fgen(w, "{}")
} else {
g.Fgen(w, "{")
g.Indented(func() {
for _, item := range expr.Items {
if td {
// If we're inside a typedDict, use the PyName of the key.
propertyKey := objectKey(item)
key := PyName(propertyKey)
g.Fgenf(w, "\n%s%q: %.v,", g.Indent, key, item.Value)
} else {
g.Fgenf(w, "\n%s%.v: %.v,", g.Indent, item.Key, item.Value)
}
}
})
g.Fgenf(w, "\n%s}", g.Indent)
}
}
}
func (g *generator) genRelativeTraversal(w io.Writer, traversal hcl.Traversal, parts []model.Traversable) {
for _, traverser := range traversal {
var key cty.Value
switch traverser := traverser.(type) {
case hcl.TraverseAttr:
key = cty.StringVal(PyName(traverser.Name))
case hcl.TraverseIndex:
key = traverser.Key
default:
contract.Failf("unexpected traverser of type %T (%v)", traverser, traverser.SourceRange())
}
switch key.Type() {
case cty.String:
keyVal := PyName(key.AsString())
contract.Assertf(isLegalIdentifier(keyVal), "illegal identifier: %q", keyVal)
g.Fgenf(w, ".%s", keyVal)
case cty.Number:
idx, _ := key.AsBigFloat().Int64()
g.Fgenf(w, "[%d]", idx)
default:
keyExpr := &model.LiteralValueExpression{Value: key}
diags := keyExpr.Typecheck(false)
contract.Ignore(diags)
g.Fgenf(w, "[%v]", keyExpr)
}
}
}
func (g *generator) GenRelativeTraversalExpression(w io.Writer, expr *model.RelativeTraversalExpression) {
g.Fgenf(w, "%.16v", expr.Source)
g.genRelativeTraversal(w, expr.Traversal, expr.Parts)
}
func (g *generator) GenScopeTraversalExpression(w io.Writer, expr *model.ScopeTraversalExpression) {
rootName := PyName(expr.RootName)
if g.isComponent {
configVars := map[string]*pcl.ConfigVariable{}
for _, configVar := range g.program.ConfigVariables() {
configVars[configVar.Name()] = configVar
}
if _, isConfig := configVars[expr.RootName]; isConfig {
if _, configReference := expr.Parts[0].(*pcl.ConfigVariable); configReference {
rootName = fmt.Sprintf("args[\"%s\"]", expr.RootName)
}
}
}
if _, ok := expr.Parts[0].(*model.SplatVariable); ok {
rootName = "__item"
}
g.Fgen(w, rootName)
g.genRelativeTraversal(w, expr.Traversal.SimpleSplit().Rel, expr.Parts)
}
func (g *generator) GenSplatExpression(w io.Writer, expr *model.SplatExpression) {
g.Fgenf(w, "[%.v for __item in %.v]", expr.Each, expr.Source)
}
func (g *generator) GenTemplateExpression(w io.Writer, expr *model.TemplateExpression) {
quotes := g.quotes[expr]
escapeNewlines := quotes == `"` || quotes == `'`
prefix, escapeBraces := "", false
for _, part := range expr.Parts {
if lit, ok := part.(*model.LiteralValueExpression); !ok || !model.StringType.AssignableFrom(lit.Type()) {
prefix, escapeBraces = "f", true
break
}
}
b := bufio.NewWriter(w)
defer b.Flush()
g.Fprintf(b, "%s%s", prefix, quotes)
for _, expr := range expr.Parts {
if lit, ok := expr.(*model.LiteralValueExpression); ok && model.StringType.AssignableFrom(lit.Type()) {
g.genEscapedString(b, lit.Value.AsString(), escapeNewlines, escapeBraces)
} else {
g.Fgenf(b, "{%.v}", expr)
}
}
g.Fprint(b, quotes)
}
func (g *generator) GenTemplateJoinExpression(w io.Writer, expr *model.TemplateJoinExpression) {
g.genNYI(w, "TemplateJoinExpression")
}
func (g *generator) GenTupleConsExpression(w io.Writer, expr *model.TupleConsExpression) {
switch len(expr.Expressions) {
case 0:
g.Fgen(w, "[]")
case 1:
g.Fgenf(w, "[%.v]", expr.Expressions[0])
default:
g.Fgen(w, "[")
g.Indented(func() {
for _, v := range expr.Expressions {
g.Fgenf(w, "\n%s%.v,", g.Indent, v)
}
})
g.Fgen(w, "\n", g.Indent, "]")
}
}
func (g *generator) GenUnaryOpExpression(w io.Writer, expr *model.UnaryOpExpression) {
opstr, precedence := "", g.GetPrecedence(expr)
switch expr.Operation {
case hclsyntax.OpLogicalNot:
opstr = "not "
case hclsyntax.OpNegate:
opstr = "-"
}
g.Fgenf(w, "%[2]v%.[1]*[3]v", precedence, opstr, expr.Operand)
}