shairport-sync/FFTConvolver/FFTConvolver.cpp

203 lines
5.0 KiB
C++
Executable File

// ==================================================================================
// Copyright (c) 2012 HiFi-LoFi
//
// This is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// ==================================================================================
#include "FFTConvolver.h"
#include <cassert>
#include <cmath>
#if defined (FFTCONVOLVER_USE_SSE)
#include <xmmintrin.h>
#endif
namespace fftconvolver
{
FFTConvolver::FFTConvolver() :
_blockSize(0),
_segSize(0),
_segCount(0),
_fftComplexSize(0),
_segments(),
_segmentsIR(),
_fftBuffer(),
_fft(),
_preMultiplied(),
_conv(),
_overlap(),
_current(0),
_inputBuffer(),
_inputBufferFill(0)
{
}
FFTConvolver::~FFTConvolver()
{
reset();
}
void FFTConvolver::reset()
{
for (size_t i=0; i<_segCount; ++i)
{
delete _segments[i];
delete _segmentsIR[i];
}
_blockSize = 0;
_segSize = 0;
_segCount = 0;
_fftComplexSize = 0;
_segments.clear();
_segmentsIR.clear();
_fftBuffer.clear();
_fft.init(0);
_preMultiplied.clear();
_conv.clear();
_overlap.clear();
_current = 0;
_inputBuffer.clear();
_inputBufferFill = 0;
}
bool FFTConvolver::init(size_t blockSize, const Sample* ir, size_t irLen)
{
reset();
if (blockSize == 0)
{
return false;
}
// Ignore zeros at the end of the impulse response because they only waste computation time
while (irLen > 0 && ::fabs(ir[irLen-1]) < 0.000001f)
{
--irLen;
}
if (irLen == 0)
{
return true;
}
_blockSize = NextPowerOf2(blockSize);
_segSize = 2 * _blockSize;
_segCount = static_cast<size_t>(::ceil(static_cast<float>(irLen) / static_cast<float>(_blockSize)));
_fftComplexSize = audiofft::AudioFFT::ComplexSize(_segSize);
// FFT
_fft.init(_segSize);
_fftBuffer.resize(_segSize);
// Prepare segments
for (size_t i=0; i<_segCount; ++i)
{
_segments.push_back(new SplitComplex(_fftComplexSize));
}
// Prepare IR
for (size_t i=0; i<_segCount; ++i)
{
SplitComplex* segment = new SplitComplex(_fftComplexSize);
const size_t remaining = irLen - (i * _blockSize);
const size_t sizeCopy = (remaining >= _blockSize) ? _blockSize : remaining;
CopyAndPad(_fftBuffer, &ir[i*_blockSize], sizeCopy);
_fft.fft(_fftBuffer.data(), segment->re(), segment->im());
_segmentsIR.push_back(segment);
}
// Prepare convolution buffers
_preMultiplied.resize(_fftComplexSize);
_conv.resize(_fftComplexSize);
_overlap.resize(_blockSize);
// Prepare input buffer
_inputBuffer.resize(_blockSize);
_inputBufferFill = 0;
// Reset current position
_current = 0;
return true;
}
void FFTConvolver::process(const Sample* input, Sample* output, size_t len)
{
if (_segCount == 0)
{
::memset(output, 0, len * sizeof(Sample));
return;
}
size_t processed = 0;
while (processed < len)
{
const bool inputBufferWasEmpty = (_inputBufferFill == 0);
const size_t processing = std::min(len-processed, _blockSize-_inputBufferFill);
const size_t inputBufferPos = _inputBufferFill;
::memcpy(_inputBuffer.data()+inputBufferPos, input+processed, processing * sizeof(Sample));
// Forward FFT
CopyAndPad(_fftBuffer, &_inputBuffer[0], _blockSize);
_fft.fft(_fftBuffer.data(), _segments[_current]->re(), _segments[_current]->im());
// Complex multiplication
if (inputBufferWasEmpty)
{
_preMultiplied.setZero();
for (size_t i=1; i<_segCount; ++i)
{
const size_t indexIr = i;
const size_t indexAudio = (_current + i) % _segCount;
ComplexMultiplyAccumulate(_preMultiplied, *_segmentsIR[indexIr], *_segments[indexAudio]);
}
}
_conv.copyFrom(_preMultiplied);
ComplexMultiplyAccumulate(_conv, *_segments[_current], *_segmentsIR[0]);
// Backward FFT
_fft.ifft(_fftBuffer.data(), _conv.re(), _conv.im());
// Add overlap
Sum(output+processed, _fftBuffer.data()+inputBufferPos, _overlap.data()+inputBufferPos, processing);
// Input buffer full => Next block
_inputBufferFill += processing;
if (_inputBufferFill == _blockSize)
{
// Input buffer is empty again now
_inputBuffer.setZero();
_inputBufferFill = 0;
// Save the overlap
::memcpy(_overlap.data(), _fftBuffer.data()+_blockSize, _blockSize * sizeof(Sample));
// Update current segment
_current = (_current > 0) ? (_current - 1) : (_segCount - 1);
}
processed += processing;
}
}
} // End of namespace fftconvolver